体育老师朱世杰_朱志鑫广播体操

hacker|
89

文章目录:

中国古代数学家简介

一、刘徽(古代著名数学家)

刘徽(约225年—约295年),汉族,山东滨州邹平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。

刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。

二、朱世杰(元代数学家、教育家)

朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。

此外他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。主要著作是《算学启蒙》与《四元玉鉴》。

三、杨辉(南宋著名数学家)

杨辉(生卒年不详),字谦光,汉族,钱塘(今浙江杭州)人,南宋杰出的数学家、数学教育家。

生平履历不详。曾担任过南宋地方行政官员,为政清廉,足迹遍及苏杭一带。他在总结民间乘除捷算法、“垛积术”、纵横图以及数学教育方面,均做出了重大的贡献。他是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家。

还曾论证过弧矢公式,时人称为“辉术”。与秦九韶、李冶、朱世杰并称“宋元数学四大家”。

著有数学著作5种21卷,即《详解九章算法》12卷(1261),《日用算法》2卷(1262),《乘除通变本末》3卷(1274),《田亩比类乘除捷法》2卷(1275)和《续古摘奇算法》2卷(1275)(其中《详解》和《日用算法》已非完书)。

后三种合称为《杨辉算法》。朝鲜、日本等国均有译本出版,流传世界。

四、李锐 (清代数学家)

李锐,中国清代数学家。字尚之,号四香。江苏元和(今苏州)人。清乾隆三 十三年十二月八日(1769 年 1 月 15 日)生;嘉庆二十二年六月三十日(1817 年 8 月 12 日)卒。数学、天文学。

曾受业于钱大昕门下,后入阮元幕府,整理数学典籍。实际主持《畴人传》的编写工作。著有《弧矢算术细草》、《勾股算术细草》、《方程新术草》,阐发中国古代数学的精粹。还曾对多部历法进行注释和数理上的考证,著成《日法朔余强弱考》。

五、赵爽 (古代数学家)

赵爽,又名婴,字君卿,中国数学家。东汉末至三国时代吴国人。他是我国历史上著名的数学家与天文学家。生平不详,约182---250年。

据载,他研究过张衡的天文学著作《灵宪》和刘洪的《乾象历》,也提到过“算术”。他的主要贡献是约在222年深入研究了《周髀》,该书是我国最古老的天文学著作,唐初改名为《周髀算经》该书写了序言,并作了详细注释。

该书简明扼要地总结出中国古代勾股算术的深奥原理。其中一段530余字的“勾股圆方图”注文是数学史上极有价值的文献。他详细解释了《周髀算经》中勾股定理,将勾股定理表述为:“勾股各自乘,并之,为弦实。开方除之,即弦。”。

又给出了新的证明:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实。”。“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明。

肺结节会引起肺癌吗?朱世杰医生看肺癌怎么样?

肺结节不一定会引起肺癌,如果良性的就没问题。至于朱世杰老师治疗肺癌,每个人的情况是不一样的,具体还得检查完看看才能下结论。

肺癌可以有分期,Ⅰ期、Ⅱ期、Ⅲ期、Ⅳ期,不同的分期。

Ⅰ期表示是早期的肺癌,Ⅳ期说明这个已经有转移了,是晚期肺癌,不同分期的肺癌生存的时间是不一样的。

Ⅰ期肺癌生存的时间是最长的,我们说五年生存率,Ⅰ期通常是在80%以上,Ⅱ期大约是在70%左右,Ⅲ期大约是在40%~50%,Ⅳ期大约是在20%左右,所以说不同的患者根据分期,他存活的时间不一样。

如果说一开始发现是晚期的肺癌,如果不治疗,他可能也就是半年到一年生存的时间。如果是早期肺癌,治疗以后他没有问题了,可以恢复到一个完全和正常人一样的生存时间。

方程式的发展历史

一)属于算术方面的材料

大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。”

和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。

现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。

古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。

小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。

宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。

(二)属于代数方面的材料

从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。

“九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。

我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。

十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。

在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。

级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。

历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。

内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。

十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。

就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。

十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。

十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》。

十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。

十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。

1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。

1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。

1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。

1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。

1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。

1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。

十四世纪中叶前,中国开始应用珠算盘。

1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。

人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程。而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?。”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大。

结绳:最古的记数方法,传为伏羲所创。

书器:一种最古的记数工具,传为隶首所创。

河图,洛书:相传分别为伏羲、夏禹所作,是为最初的魔方阵。

八卦:传为周公所创,是最初的二进制法。

规矩:传为伏羲或缍所创,用以作方圆,测量田地与勘测水道。

几何图案:在金石陶器、石器时代的陶片、周秦时代的彝器已有简单 的几何图形出现,其种类不下数十种。

九九:即个位数乘法表,传为伏羲所创。古代数学家以九九之术作为初等数学的代表。

技术方法:当时是以累积之方法记数,已有百……亿,兆等大数产生,都是以十进制的;也已有分数的产生。当时盛行的筹算,演变为后来的珠算术。

数论、方程论及数论得到进一步的研究,理论更臻完善。对中算史加以研究与着成专书。数学教育制度重新建立起来。此期末,西方数学第二次输入中国,以补中算的不足,中国数学在此又进入另一阶段。

如何在小学数学课堂中有效渗透德育教育

【摘 要】结合当前小学数学发展情况,从小学数学教学中德育教育的应用现状出发,参考自身的教学经验,提出了德育教育在小学数学教学中的应用策略,希望对于今后的小学数学教学改革发展有所帮助。

【关键词】小学数学;数学教学;德育教育;教学改革

【中图分类号】G623.5 【文献标识码】A

【文章编号】2095-3089(2018)32-0075-01

结合新课标的要求,将德育教育渗透到小学数学教学中则是必然趋势,这样能更好实现德育和美育教育得到发挥,有助于学生的身体、心理的健康发展,全面提升学生的内在和外在素质,有利于学生的德智体美劳的全面发展,符合新课改的相关要求[1]。

一、小学数学教学中德育教育的应用现状

1.教学的模式较为单一。

在传统教学模式的影响下,初中体育教学的灵活性受到一定的影响,大部分课堂教学受到时间和空间的影响比较大,相关的教学实践的针对性不强,难以激发学生的学习兴趣,造成学生的学习积极性受到一定影响,难以有效开展德育教育在小学数学教学中的渗透。

2.学生参与程度较低。

学生一直是小学数学教学的主体,应通过各种有效措施来鼓励学生积极参与数学课堂教学活动,并积极构建热烈的课堂

1条大神的评论

  • avatar
    访客 2022-07-08 下午 12:16:18

    阿拉伯记数法介绍到西方。1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。1261年,中国宋朝

发表评论