python源码接测试_python代码测试

hacker|
87

文章目录:

python怎么做接口测试工具

之前使用过urllib和urllib2做接口测试,在做的途中,感觉使用urllib2直接进行的get,post 请求并没有那么好用。作为测试人员,所需要的测试工具应当以方便为第一要务,测试的耗时只要是真正的无人值守,耗时不是太久的都可以接受。所以,本人又尝试了一个新的包:requests。

Requests 是用Python语言编写,基于 urllib,采用 Apache2 Licensed 开源协议的 HTTP 库。它比 urllib 更加方便,可以节约我们大量的工作,完全满足 HTTP 测试需求。Requests 的哲学是以 PEP 20 的习语为中心开发的,所以它比 urllib 更加 Pythoner。更重要的一点是它支持 Python3 !推荐一篇文章,上面有该包的详细说明 传送门,以下只会写到我用到的部分,所以更多的了解需要自己去搜资料

好了,我们开始吧!!

接口测试中重要的部分:

1.get和post方法

2.用到的参数

3.请求头

4.cookie

5.日志输出

6.如何调试你的程序--借助fiddler

按照以上的顺序,我将一一说明我的搞法,因为编码能力有限,所以可能看着很low

一、get和post

requests包很好的实现了post和get方法,示例:

1 import requests2 response_get = requests.get(url, data, headers, cookies)3 response_post = requests.post(url, data, headers, cookies)

其他的访问方式如put,head等等,用法几乎都是如此,因为没用到,所以省略

现在一般的接口返回值有页面和json俩种,按照需求,可以分别使用response.text或者response.content获取,text获取的是unicode类型的返回值,而content返回值是str类型,所以我一般使用content来获取返回值,因为这样获取的返回值可以直接使用正则或者in的方式来验证返回值结果是否正确。

我自己为了实现接口的自动访问,所以又在requests上面加了一层封装,就像下面这样:

1 def main_get(list_result, cookies): 2     """ 3     用于模拟get请求,返回结果 4     :param list_result:空列表,用于存储结果 5     :param cookies: 登陆后的cookie 6     :return:访问结果 7     """ 8     # List_interface_get写在接口文件里,文件是py格式,然而它本身是字典类型 9     for key in List_interface_get:10         try:11             f1 = requests.get(key, cookies=cookies)12             if f1:13                 print f1.content14                 print List_interface_get[key]+'接口访问成功'15                 split_line()16             list_result.append(f1.content+'||'+key)17             # print f1.read()18         except AssertionError:19             print 'One Error in get'20             pass21     return list_result22 23 24 def main_post(result_list, url_list, param_list, payload_list, note_list, cookies):25     """26     模拟post请求27     :param result_list: 结果字典28     :param url_list: 接口字典29     :param param_list: 入参字典30     :param payload_list: header字典31     :param notelist: 描述字典32     :param cookies: 登录获取的cookie33     :return:填充完成的结果列表34     """35 36     # post这块写的比较low,最好自己搞一个数据结构把它搞定37     for key in range(1, 9):38         a = requests.post(url=url_list[key], data=param_list[key], headers=payload_list[key], cookies=cookies)39         try:40             if a.content:41                 print a.content42                 print note_list[key]+'接口访问成功'43                 split_line()44             result_list.append(a.content+'||'+url_list[key])45         except AssertionError:46             print 'One Error in post'47             pass48     return result_list

二、用到的参数以及请求头

我用的方法是把这些都存放于一个py文件中,当然也可以使用excel或者xml文件,甚至于使用DB。项目紧急,凑合了一下,这里的数据结构主要为了符合上面封装的函数,直接上代码看吧

1 BaseURL = 'https://******.com'  # 测试环境 2 # 使用什么数据结构不重要,关键看实现方法中怎么解析你的测试数据 3 List_interface_get = { 4     BaseURL+'/api/****/****/****?****=1****=375': '描述' 5 } 6 # 以下是用于post的接口 7 List_interface_post = { 8     1: BaseURL+'/api/****/****/****/****' 9 }10 # 以下是用于post的数据11 List_post_param = {12     1: 'new=222222old=111111'13 }14 # 以下是post接口的描述,它是干嘛的15 List_post_note = {16     1: '修改密码'17 }18 # 以下是post用到的请求头19 List_post_header= {20     1: {'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'}21 }

三、cookie

一款产品的接口测试中必定会使用登录状态,需要使用cookie实现,之前写过使用cookiejar获取cookie,requests中获取cookie的方法更为简单,不过首先你得知道是哪个接口set了cookie,不过一般是登录啦。登录接口访问之后set了cookie,那好,就去调用登录接口,然后拿到搞回来的cookie:

# 只需要这样!!login = requests.post(login_url, data=login_data, headers=login_header)

cookie = login.cookies

这个cookie就是登录状态了,拿着随便用,需要登录的就直接cookies=cookies

四、日志输出

这里注意看第二步中接口数据,有接口描述,也有接口是啥,第一步中又把content做成返回值了,具体拼接方式自己想吧,东西全有了,想写啥写啥,还可以加上获取本地时间的api获取接口运行时间,log文件该长啥样是门学问,这里就不献丑了。

五、借用fiddler调试你的脚本

requests允许使用代理访问,这有啥用,真有!fiddler是一款截包改包的工具,而且通过扩展可以进行请求间的比对,这样让你的程序访问的请求和真正正确的请求作对比,为啥我的程序访问出错?是不是缺了请求头?参数是不是丢了?cookie是不是少了?很容易看出来。写法如下:

proxies = {     "http": "",     "https": ""}

requests.post(url, proxies=proxies)

这样就可以走代理了,除fiddler以外还有charles和burp suite可以使用,具体看个人喜好吧。

如何使用python 语言来实现测试开发

对于各种驱动接口,Python来编写测试用例的好处是:由于Python不需要编译,你所执行的也就是你所编写的,当发生异常的时候,你无须打开集成开发环境,加载测试工程、并调试,你能够很方便的看到python测试脚本的内容,什么地方出了异常可以立刻发现,例如:

from ctypes import *

rc =c_int(-12345);

dll = windll.LoadLibrary("dmodbc.dll");#加载被测试组件

#=================#

SQLHANDLE_env = pointer(c_long(0));

SQLHANDLE_cnn = pointer(c_long(0));

SQLHANDLE_stmt = pointer(c_long(0));

pdns = c_char_p("FASTDB");

puid = c_char_p("SYSDBA");

ppwd = c_char_p("SYSDBA");

#env handle

rc = dll.SQLAllocHandle(1,None,byref(SQLHANDLE_env));

print "result of henv handle alloc :%d" %rc;

#cnn handle

rc = dll.SQLAllocHandle(2,SQLHANDLE_env,byref(SQLHANDLE_cnn));

print "result of cnn handle alloc :%d" %rc;

#connect!

rc = dll.SQLConnect(SQLHANDLE_cnn,pdns,-3,puid,-3,ppwd,-3)

print "result of connect :%d" %rc;

#stmt handle

rc = dll.SQLAllocHandle(3,SQLHANDLE_cnn,byref(SQLHANDLE_stmt));

print "result of stmt handle alloc:%d" %rc;

#exec

rc = dll.SQLExecDirect(SQLHANDLE_stmt,"insert into t values(1)",-3);

print "result of exec:%d" %rc;

#free========================

rc = dll.SQLFreeHandle(3, SQLHANDLE_stmt);

print rc;

rc = dll.SQLDisconnect(SQLHANDLE_cnn);

print rc;

rc = dll.SQLFreeHandle(2, SQLHANDLE_cnn);

print rc;

rc = dll.SQLFreeHandle(1, SQLHANDLE_env);

print rc;

在上面我们可以看到,Python调用c/c++接口是十分容易的,只需要把动态库加载进来,然后把这个动态库当作一个对象实例来使用就可以了。下面将是一个使用ado.net接口的例子:

import System;

from Dm import *#Dm是DMDBMS提供的ado.Net的DataProvider

#print dir(Dm.DmCommand);

i =0;

cnn = Dm.DmConnection("server = 127.0.0.1; User ID = SYSDBA; PWD = SYSDBA; Database = SYSTEM; port = 12345");

cmd = Dm.DmCommand();

cmd.Connection = cnn;

cmd.CommandText = "insert into t values(1);";

cnn.Open();

i=cmd.ExecuteNonQuery();

print i;

cmd.Dispose();

cnn.Close();

可以看到,.net对象的使用与在VisualStdio上进行开发几乎没有任何区别。

通过使用Python进行测试用例的开发,最大的好处莫过于:学习成本非常低,测试工程师只需要学习Python,对于其他语言稍有了解就可以了。同时只需要少量的测试开发工程师对Python测试框架进行维护。

这样的好处就是便于测试人员将精力专精在一个方向,免于“什么都会一点,但什么都不精”的情况。当然测试人员具备广阔的知识面,会使用各种常见的开发工具与平台是好事情,并且也是必要的,不过在短时间内要求迅速能够胜任大多数任务也是企业在人才培养上的期望目标。

python3.7idle如何测试源代码

python3.7idle测试源代码的方法:1、鼠标右键使用IDLE打开要调试的【.py】文件,点击【Run-Python Shell】;2、点击【Debug-Debugger】,弹出【Debug Control】窗口,设置断点并运行。

步骤1:打开Python Shell

鼠标右键使用IDLE打开需要调试的.py文件点击RunPython Shell

步骤2:打开Debug Control

点击Python Shell的DebugDebugger,弹出Debug Control窗口

Go按钮:点击Go按钮将导致程序正常执行至终止,或到达一个断点

Step按钮:点击Step将导致调试器执行下一行代码,然后再次暂停(会步入函数,相当于VS的F11单步执行)

Over按钮:与Step类似,但是如果下一行代码是函数调用,Over将会跳过该函数代码(相当于VS的F10,过程执行)

Out按钮:点击Out按钮将导致调试器全速执行代码行,直到他从当前函数返回(与Step相辅相成,Step进去想快点出来就Out)

Quit按钮:点击Quit按钮将马上终止该程序

步骤3:设置断点并运行

设置断点使用鼠标右键需要打断点的一行Set Breakpoint,点击RunRun Module进行调试

推荐课程:Python快速教程之从入门到精通

Python自动化测试在源码时代需要学的内容有哪些

python做自动化测试,主要是接口测试和UI自动化测试。 自动化测试还要学习的有很多

第一阶段:Python基础编程

第二阶段:Python高级编程

第三阶段:H5移动开发

第四阶段:数据库编程

第五阶段:后端大项目实战

第六阶段:网络爬虫

第七阶段: shell和自动化运维

第八阶段:高薪课程

怎么用python做自动化测试

1新建一台Jenkins服务器,安装并配置好Jenkins2配置一个自动化测试脚本的代码库,可以使用Git或者SVN等版本控制工具。然后在Jenkins服务器上配置一个Job,负责自动的同步最新代码到Jenkins服务器上。3配置要跑自动化测试的虚拟机VM,推荐干净环境下安装需要跑自动化测试的依赖软件工具或者配置以及自动化测试工具(不提前安装配置也行,可以在跑自动化之前用另外的脚本自动安装配置),配置好之后关机并打一个snapshot镜像快照,并命名为prebuild或其它。4新建一个JenkinsJob,用来跑自动化。配置需要连接并使用的自动化测试虚拟机,配置要构建的自动化测试框架xml脚本文件(后面步骤有说明)和target,以及要归档的测试报告,邮件发送等等。5接下来的重点就是自动化测试框架的xml脚本文件了,首先里面定义一个target,负责获取自动化测试对象的安装包。6接着定义一个target(可选),负责从版本库上获取自动化测试脚本同步到Jenkins服务器上(也可以直接使用JenkinsJob本身的插件配置来获取代码)。7定义一个target,负责连接到虚拟机服务器,并恢复到虚拟机的原始状态例如prebuild,然后开机8定义一个target,负责拷贝项目产品安装包和自动化测试源代码到目标虚拟机上。9定义一个target,负责连接到目标测试虚拟机,并打开自动化测试工具,然后运行自动化测试脚本10定义一个target,负责处理自动化测试报告文件和日志文件并把它们从自动化测试虚拟机拷贝到Jenkins服务器对应的Job工作空间下。11最后定义一个主target,按照上面的target流程依次调用。这个主target就是Jenkins服务器上的自动化测试Job中配置的需要构建的Target。

源码时代Python自动化测试的学习内容有哪些

用python做自动化测试,主要是接口测试和UI自动化测试。 自动化测试还要学习的有很多,selinum、webdriver、monkey、APP测试等等这些都要学习的,建议你去鲁德,课程多样化,学习比较扎实,自动化测试是主打课程

1条大神的评论

  • avatar
    访客 2022-07-16 上午 02:40:06

    输出这里注意看第二步中接口数据,有接口描述,也有接口是啥,第一步中又把content做成返回值了,具体拼接方式自己想吧,东西全有了,想写啥写啥,还可以加上获取本地时间的api获取接口运行时间,lo

发表评论