文章目录:
储能有哪些种类又有哪些优点与缺点
电类储能有多少种类型?电气类储能的应用形式只有超级电容器储能和超导储能。
1、超级电容器储能
根据电化学双电层理论研制而成的,又称双电层电容器,两电荷层的距离非常小(一般0.5mm以下),采用特殊电极结构,使电极表面积成万倍的增加,从而产生极大的电容量。
超级电容器储能开发已有50多年的历史,近二十年来技术进步很快,使它的电容量与传统电容相比大大增加,达到几千法拉的量级,而且比功率密度可达到传统电容的十倍。
超级电容器储能将电能直接储存在电场中,无能量形式转换,充放电时间快,适合用于改善电能质量。由于能量密度较低,适合与其他储能手段联合使用。
2、超导储能
超导储能系统是由一个用超导材料制成的、放在一个低温容器(cryogenic vessel) (杜瓦Dewar )中的线圈、功率调节系统(PCS)和低温制冷系统等组成。
能量以超导线圈中循环流动的直流电流方式储存在磁场中。
超导储能适合用于提高电能质量,增加系统阻尼,改善系统稳定性能,特别是用于抑制低频功率振荡。
但是由于其格昂贵和维护复杂,虽然已有商业性的低温和高温超导储能产品可用,在电网中应用很少,大多是试验性的。SMES 在电力系统中的应用取决于超导技术的发展 (特别是材料、低成本、制冷、电力电子等方面技术的发展)。
3、铅酸电池
铅酸电池是世界上应用最广泛的电池之一。铅酸电池内的阳极(PbO2)及阴极(Pb)浸到电解液(稀硫酸)中,两极间会产生2V的电势,这就是铅酸电池的原理。
铅酸电池常常用于电力系统的事故电源或备用电源,以往大多数独立型光伏发电系统配备此类电池。目前有逐渐被其他电池(如锂离子电池)替代的趋势。
4、锂离子电池
锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构。
充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态。
由于锂离子电池在电动汽车、计算机、手机等便携式和移动设备上的应用,所以它目前几乎已成为世界上应用最为广泛的电池。
锂离子电池的能量密度和功率密度都较高,这是它能得到广泛应用和关注的主要原因。
它的技术发展很快,近年来,大规模生产和多场合应用使其价格急速下降,因而在电力系统中的应用也越来越多。
锂离子电池技术仍然在不断地开发中,目前的研究集中在进一步提高它的使用寿命和安全性,降低成本、以及新的正、负极材料的开发上。
5、钠硫电池
钠硫电池的阳极由液态的硫组成,阴极由液态的钠组成,中间隔有陶瓷材料的贝塔铝管。电池的运行温度需保持在300℃以上,以使电极处于熔融状态。
日本的NGK公司是世界上唯一能制造出高性能的钠硫电池的厂家。目前采用50kW的模块,可由多个50kW的模块组成MW级的大容量的电池组件。
在日本、德国、法国、美国等地已建有约200多处此类储能电站,主要用于负荷调平、移峰、改善电能质量和可再生能源发电,电池价格仍然较高。
6 、全钒液流电池
在液流电池中,能量储存在溶解于液态电解质的电活性物种中,而液态电解质储存在电池外部的罐中,用泵将储存在罐中的电解质打入电池堆栈,并通过电极和薄膜,将电能转化为化学能,或将化学能转化为电能。
液流电池有多个体系,其中全钒氧化还原液流电池(vanadium redox flow battery, VRFB)最受关注。
这种电池技术最早为澳大利亚新南威尔士大学发明,后技术转让给加拿大的VRB公司。
在2010年以后被中国的普能公司收购,中国的普能公司的产品在国内外一些试点工程项目中获得了应用。
电池的功率和能量是不相关的,储存的能量取决于储存罐的大小,因而可以储存长达数小时至数天的能量,容量也可达MW级,适合于应用在电力系统中。
储能优点与缺点:
各种类型的储能系统中,锂离子电池储能是目前技术相对成熟的一种储能方式。以橄榄石型磷酸铁锂为活性物质的锂离子二次电池,具有较高的能量密度、较低的生产制造成本以及使用寿命长等诸多优点。在电动汽车产业的推动下,与磷酸铁锂电池有关的荷电状态估算、电池集成技术、管理系统等方面更是进行了广泛、深入的研究工作。然而,这些研究多数是在电动汽车使用环境、运行工况和使用条件下进行的,其研究成果和结论并不完全适用于以大规模能量输入/输出为特征的电网储能系统。
储能定义:
从广义上讲,储能即能量存储,是指通过一种介质或者设备,把一种能量形式用同一种或者转换成另一种能量形式存储起来,基于未来应用需要以特定能量形式释放出来的循环过程。
从狭义上讲,针对电能的存储,储能是指利用化学或者物理的方法将产生的能量存储起来并在需要时释放的一系列技术和措施。
九种储能电池技术优劣对比:
一、铅酸电池
主要优点:
1、原料易得,价格相对低廉;
2、高倍率放电性能良好;
3、温度性能良好,可在-40~+60℃的环境下工作;
4、适合于浮充电使用,使用寿命长,无记忆效应;
5、废旧电池容易回收,有利于保护环境。
主要缺点:
1、比能量低,一般30~40Wh/kg;
2、使用寿命不及Cd/Ni电池;
3、制造过程容易污染环境,必须配备三废处理设备。
二、镍氢电池
主要优点:
1、与铅酸电池比,能量密度有大幅度提高,重量能量密度65Wh/kg,体积能量密度都有所提高200Wh/L;
2、功率密度高,可大电流充放电;
3、低温放电特性好;
4、循环寿命(提高到1000次);
5、环保无污染;
6、技术比较锂离子电池成熟。
主要缺点:
1、正常工作温度范围-15~40℃,高温性能较差;
2、工作电压低,工作电压范围1.0~1.4V;
3、价格比铅酸电池、镍氢电池贵,但是性能比锂离子电池差。
三、锂离子电池
主要优点:
1、比能量高;
2、电压平台高;
3、循环性能好;
4、无记忆效应;
5、环保,无污染;目前是最好潜力的电动汽车动力电池之一。
四、超级电容
主要优点:
1、功率密度高;
2、充电时间短。
主要缺点:能量密度低,仅1-10Wh/kg,超级电容续航里程太短,不能作为电动汽车主流电源。
五、燃料电池
主要优点:
1、比能量高,汽车行驶里程长;
2、功率密度高,可大电流充放电;
3、环保,无污染。
主要缺点:
1、系统复杂,技术成熟度差;
2、氢气供应系统建设滞后;
3、对空气中二氧化硫等有很高要求。由于国内空气污染严重,在国内的燃料电池车寿命较短。
六、钠硫电池
优势:
1、高比能量(理论760wh/kg;实际390wh/kg);
2、高功率(放电电流密度可达200~300mA/cm2);
3、充电速度快(充满30min);
4、长寿命(15年;或2500~4500次);
5、无污染,可回收(Na,S回收率近100%);6、无自放电现象,能量转化率高;
不足:
1、工作温度高,其工作温度在300~350度,电池工作时需要一定的加热保温,启动慢;
2、价格昂贵,万元/每度;
3、安全性差。
七、液流电池(钒电池)
优点:
1、安全、可深度放电;
2、规模大,储罐尺寸不限;
3、有很大的充放电速率;
4、寿命长,高可靠性;
5、无排放,噪音小;
6、充放电切换快,只需0.02秒;
7、选址不受地域限制。
缺点:
1、正极、负极电解液交叉污染;
2、有的要用价贵的离子交换膜;
3、两份溶液体积大,比能量低;
4、能量转换效率不高。
八、锂空气电池
致命缺陷:固体反应生成物氧化锂(Li2O)会在正极堆积,使电解液与空气的接触被阻断,从而导致放电停止。科学家认为,锂空气电池的性能是锂离子电池的10倍,可以提供与汽油同等的能量。锂空气电池从空气中吸收氧气充电,因此这种电池可以更小、更轻。全球不少实验室都在研究这种技术,但如果没有重大突破,要想实现商用可能还需要10年。
九、锂硫电池(锂硫电池是一类极具发展前景的高容量储能体系)
优点:
1、能量密度高,理论能量密度可达2600Wh/kg;
2、原材料成本低;
3、能源消耗少;
4、低毒。
储罐都有哪些类别划分
储罐分类
由于储存介质的不同,储罐的形式也是多种多样的。
按位置分类:可分为地上储罐、地下储罐、半地下储罐、海上储罐、海底储罐等。
按油品分类:可分为原油储罐、燃油储罐、润滑油罐、食用油罐、消防水罐等。
按用途分类:可分为生产油罐、存储油罐等。
按形式分类:可分为立式储罐、卧式储罐等。
按结构分类:可分为固定顶储罐、浮顶储罐、球形储罐等。
按大小分类: 50m3以上为大型储罐,多为立式储罐; 50m 3 以下的为小型储罐,多为卧式储罐。
按储罐的材料:储罐工程所需材料分为罐体材料和附属设施材料。罐体材料可按抗拉屈服强度或抗拉标准强度分为低强钢和高强钢,高强钢多用于5000m3以上储罐;附属设施(包括抗风圈梁、锁口、盘梯、护栏等)均采用强度较低的普通碳素结构钢,其余配件、附件则根据不同的用途采用其他材质,制造罐体常用的国产钢材有20、20R、16Mn、16MnR、以及Q235系列等。
结构
目前我国使用范围最广泛、制作安装技术最成熟的是拱顶储罐、浮顶储罐和卧式储罐。
拱顶式
拱顶储罐是指罐顶为球冠状、罐体为圆柱形的一种钢制容器。拱顶储罐制造简单、造价低廉,所以在国内外许多行业应用最为广泛,最常用的容积为 1000 -10000m 3 ,国内拱顶储罐的最大容积已经达到 30000m 3 。
罐底:罐底由钢板拼装而成,罐底中部的钢板为中幅板,周边的钢板为边缘板。边缘板可采用条形板,也可采用弓形板。一般情况下,储罐内径 16.5m 时,宜采用条形边缘板,储罐内径≥ 16.5m 时,宜采用弓形边缘板。
罐壁:罐壁由多圈钢板组对焊接而成,分为套筒式和直线式。
套筒式罐壁板环向焊缝采用搭接,纵向焊缝为对接。拱顶储罐多采用该形式,其优点是便于各圈壁板组对,采用倒装法施工比较安全。
直线式罐壁板环向焊缝为对接。优点是罐壁整体自上而下直径相同,特别适用于内浮顶储罐,但组对安装要求较高、难度亦较大。
罐顶:罐顶有多块扇形板组对焊接而成球冠状,罐顶内侧采用扁钢制成加强筋,各个扇形板之间采用搭接焊缝,整个罐顶与罐壁板上部的角钢圈(或称锁口)焊接成一体。
浮顶式
浮顶储罐是由漂浮在介质表面上的浮顶和立式圆柱形罐壁所构成。浮顶随罐内介质储量的增加或减少而升降,浮顶外缘与罐壁之间有环形密封装置,罐内介质始终被内浮顶直接覆盖,减少介质挥发。
罐底:浮顶罐的容积一般都比较大,其底板均采用弓形边缘板。
罐壁:采用直线式罐壁,对接焊缝宜打磨光滑,保证内表面平整。浮顶储罐上部为敞口,为增加壁板刚度,应根据所在地区的风载大小,罐壁顶部需设置抗风圈梁和加强圈。
浮顶:浮顶分为单盘式浮顶、双盘式浮顶和浮子式浮顶等形式。
单盘式浮顶:由若干个独立舱室组成环形浮船,其环形内侧为单盘顶板。单盘顶板底部设有多道环形钢圈加固。其优点是造价低、好维修。
双盘式浮顶:由上盘板、下盘板和船舱边缘板所组成,由径向隔板和环向隔板隔成若干独立的环形舱。其优点是浮力大、排水效果好。
内浮顶式
内浮顶储罐是在拱顶储罐内部增设浮顶而成,罐内增设浮顶可减少介质的挥发损耗,外部的拱顶又可以防止雨水、积雪及灰尘等进入罐内,保证罐内介质清洁。这种储罐主要用于储存轻质油,例如汽油、航空煤油等。内浮顶储罐采用直线式罐壁,壁板对接焊制,拱顶按拱顶储罐的要求制作。目前国内的内浮顶有两种结构:一种是与浮顶储罐相同的钢制浮顶;另一种是拼装成型的铝合金浮顶。
卧式
卧式储罐的容积一般都小于 100m3 ,通常用于生产环节或加油站。卧式储罐环向焊缝采用搭接,纵向焊缝采用对接。圈板交互排列,取单数,使端盖直径相同。卧式储罐的端盖分为平端盖和碟形端盖,平端盖卧式储罐可承受 40kPa 内压,碟形端盖卧式储罐可承受 0.2Mpa 内压。地下卧式储罐必须设置加强环,加强还用角钢煨制而成。
天然气发动机动力不足的原因?
发动机动力不足、加速不良一般是由燃油压力过低、喷油器喷油不良、点火高压低或能量小、点火正时不正确、气缸压缩压力低及排气管堵塞等原因造成。通常可以按以下方法检查确定具体的故障原因:
1、将加速踏板踩到底,检查节气门能否全开。如果不能完全打开,调整节气门拉索或踏板。 2、检查进气系统是否堵塞或漏气。如果进气系统堵塞或漏气,必然影响发动机的充气效率,造成发动机动力和加速性能下降。具体应该检查空气滤清器、进气管道及各种真空软管有无堵塞或漏气。
3、检查排气系统是否堵塞。排气系统的背压一般控制在2.5个大气压以内,如果由于排气管堵塞而造成排气系统的背压过大,必然造成气缸内残余的废气含量增大,从而造成混合气的燃烧速度下降,气缸的有效压力降低。造成排气系统背压增大的原因主要有排气管堵塞、排气消音器变形或三元催化转换器等,应检查这些部件。
4、检查燃油系统供油是否正常。 ① 查燃油系统的压力。如果燃油系统的压力不正常,特别是燃油系统压力过低时,在单位时间内喷油器的喷油量就会减小,从而造成混合气过稀,发动机的动力性将大大下降,造成发动机动力不足、加速不良
储罐应该分为哪几种?求解答,谢谢
立式储罐有卧式储罐,有金属储罐有非金属储罐,有压力储罐有常压储罐,有液体储罐有固体储罐,有气体储罐等。
焊工证项目里的管道氩电联焊6G可以用手工电弧焊焊接储罐吗?
可以焊接底部带有衬垫的或不要求单面焊双面成行的焊缝,如果焊件要求打底焊条电弧焊单面焊双面成型是不能操作。这个是根据焊缝的工艺要求而定。望采纳,谢谢!
,罐壁顶部需设置抗风圈梁和加强圈。浮顶:浮顶分为单盘式浮顶、双盘式浮顶和浮子式浮顶等形式。单盘式浮顶:由若干个独立舱室组成环形浮船,其环形内侧为单盘顶板。单盘顶板底部设有多道环形钢圈加固。其优点是造价低、好维修。双盘式
,正负电极由两种不同的锂离子嵌入化合物构。充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态。由于锂离子电池在电动汽车、计算