文章目录:
- 1、新能源行业最近有什么发展趋势?
- 2、电动重卡前景展望:换电模式过渡,氢燃料可能是大势所趋
- 3、新能源汽车电驱动技术发展和产业化趋势
- 4、解放/东风/福田/比亚迪等争相布局 电动重卡五大发展趋势了解下
- 5、新能源汽车发展趋势是什么?
- 6、新能源汽车的发展前景及趋势
新能源行业最近有什么发展趋势?
现在新能源是当前比较火热的专业,就业方向也是比较宽的。
1、太阳能太阳能(000591)具有环保,效率高无枯竭危险的特性,在使用上对地理位置要求较低,因此我国光伏发电市场发展快速。
2、生物质能生物质能源是近几年来发展快速的能源领域。其低污染性,分布广泛性,并且总量丰富,使得它具有广泛的应用性。生物质能源在利用上目前仍以直接燃烧为主。
3、风能风能由于受地理位置限制和对面积要求较高,其应用没有太阳能和生物质能广泛。但风能发电成本低,在条件优厚的地区风能发电成为当地发展新能源产业的一有利模式。
4、核能核能尽管不是可再生资源,但核能干净,无污染,几乎零排放的特征让核能发电在能量资源利用上颇受关注。目前我国正在运营的核电站13个,共22台机组。核电行业技术要求高,具备一级生产资质的企业少。
市场主流的新能源汽车类型:
1、新能源包括混合动力汽车:采用燃油和电作为驱动原料的混合动力。目前各大品牌基本都有此类车型,比如:奔驰S400、宝马5系等,这些混动车辆都会标有Hybrid字样。
2、纯电动汽车:此款车完全脱离了燃油,完全靠电作为驱动原料的混合动力。
3、燃料电池汽车:这款车也是电池车,是一种氢氧混合燃料电池,您可以快速将电池燃料灌满,无需充电等待。
4、氢能源动力汽车:此款车也完全脱离了燃油,利用氢能源替代了燃料。
5、太阳能汽车:这款车大家比较容易理解,通过太阳能电池板,转化成电能来驱动车辆。
电动重卡前景展望:换电模式过渡,氢燃料可能是大势所趋
首先,在商用车行业来说,常规意义上的新能源车型几近于一台燃油车底盘上挂了一台电池,当然,内燃机也换成了电动机。通俗的来说,就是个大号电瓶车,而电瓶车的缺点也是显而易见的——较短的续航里程和较长的充电时效。
纵观今年大批量交车的几家新能源重卡,产品构成主要以搅拌、自卸、专用车底盘为主,就算是牵引车产品,也是被投放与港口、站内短倒使用。所以从新能源重卡投放使用的主要场景来看,其短续航里程的问题还是凸显了出来。
除此之外,还有一个比较要命的问题就是充电时效。作为工具车来讲,卡车的出勤率几乎是决定命运的因素,如果因为充电效率太低进一步导致出勤率跟不上,那这样的产品出现将意义不大。
解决方案:换电模式
为应对充电时效与续航里程导致的出勤率问题,像华菱、福田等企业推出了换电模式,即3分钟可更换电瓶,确保在单人单车的前提之下,可以做到持续输出运力,保证较高出勤率。
但单块电池的续航里程问题依旧存在,即便电池可快速更换,也只能在换电站辐射最大的续航里程1/2作业半径内进行运输工作。所以,只要是电动重卡,就目前阶段来说,其适用场景依旧被局限在像港口、矿山等倒短运输内。
作为营运车来说,前期投入成本影响用户选车的程度自然无需多言。但作为电动重卡,一块电能储量较大的电池包势必会对前期成本造成较大影响。就拿现在比较有影响力的几家电池厂商来说,像国轩高科,宁德时代,它们造出来的电池成本粗算在1000元1度电,也就是说,按照当前重卡300度电储能力的标准来算,一块大电池的成本可以达到30万左右,基本就是一辆燃油车的价格。
虽然如此计算可能会有些夸张,但对于电动重卡来说,电池成本确实是一个亟待解决的问题。虽然随着投入使用时间推移,这样高昂的成本会被不断稀释,但对于一些小型企业来说,电动重卡的价格依然是难以接受的。
解决方案:车电分离 电能租赁
当然,针对电动重卡的成本问题,一些厂商也非常适时地推出了新的“车电分离”模式——就是你只需要购买车辆的底盘即可,电池使用为租赁模式,用多少电,给多少电的钱。这样做的好处就是电池管理形成了标准、统一的模式,并且告别了高昂的一次性先期投入成本。相对来说,这确实是一种相对更加经济使用的解决方案。
单从排放来看,电动 汽车 的排放基本上等于零,但电动 汽车 从两个间接方面来看依旧存在一定的污染。
首先,我国电能产出绝大部分依然需要依靠火力发电,虽然电动重卡不会造成直接排放污染,但火力发电燃烧会造成提前污染,至于火力发电燃烧和内燃机直接转化动能燃烧二者谁的污染系数更高,依然是个需要考虑的问题。
再一个,电池从一定程度上来说,是一种消耗品。并且以现在绝大部分电动重卡使用的磷酸铁锂电池来说,其消耗速率会更高。而当其容量降至80%以下,无法正常地为车辆提供动能,就必须将电池拆解回收,回收面临的污染问题随即浮现。
所以从发电、到废旧电池处理两个层面来看,为环保而生的电动卡车是否真正环保,依然需要时间印证。不过这里有一个成本相对较高的解决方案——氢燃料电池,但就成本方面考虑,其距离大规模投入使用仍需较长周期。
争议不断 但仍有可取之处
目前阶段来看,不管是在商用车还是乘用车领域,新能源车型都是饱受非议的,并且唏嘘之声愈发严重,甚至出现过一段新能源 汽车 “骗补”潮,可谓吃相难看,花样百出。但新能源车型其实也并不一无是处,最起码在其使用场景内,其优势还是相当显著的。
华菱 汽车 新能源研究所所长牛俊对换电重卡曾算过一笔账,以搅拌车为例,在当前油电差价下,以柴油价格5.5元/L、百公里油耗55L、电费价格0.8元/kWh、百公里能耗155kWh来计算。“在年运营300天、日运行里程140km的场景下,柴油车一年油耗成本为12.7万元;而换电车的一年电耗成本为5.2万元,较柴油车节省7.5万元。”如果一个车队50辆车,可年省燃料成本375万。
虽然以这样理想状态之下计算可能和实际使用会有一定的出入,但依旧不能否定电动重卡降低运营成本的效果还是非常显著的。起码在工程三大场景之内,它的优势是燃油车无法比拟的。
显然,新能源 汽车 是一个个性鲜明的产品,优缺点都很明显。但其是否能够真正意义上替代燃油车?笔者认为:能,但需要四个前提条件。
首先,续航里程瓶颈需要突破性进展,大规模投入的前提参考目前主流燃气重卡续航里程,冬季1000km左右可以作为散户入手的放心标准。并且不管是充电、换电或者燃料电,其保障体系也需需要跟上。
其次,燃油车排放升级技术瓶颈。纵观国六排放之前的污染物限值参考值,基本上每升级一次排放就减半一次,这也就意味着其排放升级的成本可能会有一定的指数增长特性,具体参考百足金、千足金、万足金之间的差价。
第三,告别间接污染的燃料电池。还是上文说到的间接污染,传统储能电池在发电,电池处理方面存污染,与新能源车型“为环保而生”的目的多少有些背道而驰。但新能源车型中的“贵族”——氢燃料电池在一定程度上摆脱了这个问题,首先其电池可循环性较高,使用周期更长,再一个其只生成干净无害的水。
各国禁售燃油车规划表
第四,政策需求印证。早在2016年,欧洲就有部分国家提出了禁售燃油车的规划,国内像台湾、海南等地也开始陆续规划。从政策性引导发展趋势来看,国内新能源 汽车 代替传统燃油车也只是时间问题。
编后语
每一个新事物的到来,必然会经历一定的风霜。新能源这个概念也不例外,虽然绝大部分人群并不看好这一目前阶段看起来比较新鲜的东西,但随着时间不断地推移,新能源技术发展势必会打破一部分用户的有色眼镜,目前来看还需理性对待。(文/蔡仕琪)
新能源汽车电驱动技术发展和产业化趋势
新能源 汽车 的动力系统包括电驱动系统与电源系统两大类
电驱动系统包含电机、电控制器、减速箱,是驱动电动 汽车 行驶的核心部件;电源系统包含车载充电机(OBC)、DC-DC 转换器和高压配电盒,是动力电池组进行充电、电能转换及分配的核心部件。
电驱动产业链涉及环节较多,可以概括为零件—总成—系统—整车厂四大层级。
上游零部件包括永磁体、硅钢体、功率模块、电容、传感器等,这一级的玩家对在整车产业链中属于“三级供应商”。在零部件基础上进一步设计组装得到电机总成、电控总成与传动总成,这一级的玩家可以称为车企的“二级供应商”;各个单独总成进一步集成为电驱动系统供货于车企,这一级玩家为行业“一级供应商”。
1.1. 大三电:电机、电控、减速器
1.1.1. 电机:扁线电机、高压电机带来新机遇
电驱动系统在新能源 汽车 成本中占比仅次于电池。电驱动系统(电机、电控、减速器)是新能源 汽车 动力总成的关键部件,相当于传统燃油车发动机的作用,直接决定整车的动力性能。其成本占比仅次电池,占比绝对值因新能源 汽车 品牌、车型而异。
驱动电机主要技术路径聚焦在永磁同步电机交流异步电机上。永磁同步电机与交流异步电机的主要区别点在于转子结构,永磁同步电机会在转子上放置永磁体,由磁体产生磁场;而交流异步电机则是由定子绕组通电产生旋转磁场。功率密度、效率(高效率区间)是衡量电机性能的关键指标:
1)功率密度越大代表着相同功率下的电机体积更小,有利于节省空间制造成本;
2)效率越高,说明电机端损耗越小,相同电池容量下,新能源车续航里程更长。
永磁同步电机为目前应用最多的电机类型,异步电机在高端车型双电机配置下会有部分使用。相比交流异步电机,永磁同步电机功率密度更高、高效区间更宽、质量更轻。
根据第一电动 汽车 网统计信息,2022 年 3 月,我国新能源 汽车 共配套驱动电机 50.97 万台,其中永磁同步电机为 48.60 万台,占比 95%,适用于大部分主流车型;交流异步电机配套 2.09 万台,占比为 4%,主要配套包括特斯拉 Model Y、岚图 FREE、蔚来 ES8、奥迪 e-tron、大众 ID.4 CROZZ 等车型。交流异步电机在高速中应用性能更优,同时具有成本优势(稀土永磁材料成本较高,同功率的永磁同步电机价格更高),目前配套多以高端车型、双电机方案为主 (蔚来 ES8 是前永磁同步+后交流异步,特斯拉 Model Y 2021款采用前感应异步+后永磁同步)。
多电机在高端车型中应用有所增加,故单车配套电机数也随高端市场占比而变化。
相比单电机,双电机可以显著提高 汽车 的加速性能与续航能力。同时,双电机多意味着四驱系统,可以提供更好的附着力,从而提高安全性能。近年来,在高端车型中双电机的应用不断增加,特斯拉、蔚来、奥迪、大众、奔驰都陆续推出搭载双电机的车型。而在法拉第 FF91 和荣威 MarvelX 中更是使用了三个电机。
扁线:可有效提高电机功率密度,减少铜损耗以提升效率。
1)功率密度高:相较于传统的圆线绕组电机,扁线电机将圆形导线换成矩形导线,因此相同面积的定子线槽可以塞进更多面积的导线,进而提高功率密度。
2)效率高、损耗小:铜损耗在电机损耗里占比达 65%,因此为提高电机效率,需采用更合理的定子绕组,从而降低铜耗。此外,扁线截面更粗使得电阻相对更小,铜导线发热损失的能量也越小。而且扁线电机的端部尺寸短 5-10mm,从而降低端部绕组铜损耗。
3)重量、NVH 等方面也存在优势。
发卡电机为应用最广泛的扁线技术,产线投资高,产业化仍处于前期阶段。根据线圈绕组方式差异,扁线电机可分为集中绕组扁线电机、波绕组扁线电机与 Hairpin(发卡)扁线电机,其中发卡电机应用最为广泛。相对圆线电机,扁线电机无法进行手工制造、自动化要求较高——绕组制造过程非常复杂,需要先将导线,制作成发卡的形状,然后通过自动化插入到定子铁芯槽内,然后进行端部扭头和焊接。高自动化及定制化使得扁线电机产线投入较高,根据方正电机,2021 年来公司已先后投资 17.42 亿元用于产线建设,对企业资金实力有较大挑战。
雪佛兰和丰田开启扁线电机应用先河,近年来渗透率不断提升。2007 年,雪佛兰VLOT 采用的电动 汽车 中就有发卡式扁线电机,其供应商为雷米。2015 年,丰田发行了装载扁线电机的第四代普锐斯,其电机供应商为 Denso。在扁线电机更高的效率加成下及内外资电机厂商批量化工艺的成熟,近年来其应用不断增加,2020 年来,保时捷、比亚迪、特斯拉等车企纷纷推出装载发卡式电机的新车型,渗透率不断增长。根据方正电机公司年报,2020 年全球新能源 汽车 行业扁线电机渗透率为 15%,我国扁线电机渗透率约为 10%。2021 年随着各主流车企大规模换装扁线电机,特斯拉换装国产扁线电机,我国扁线电机渗透率已与全球扁线电机渗透率同步增长至 25%。
此外,在高端车型中,搭载扁线电机数量也开始从原来的单电机增加到双电机。例如,保时捷首款纯电动跑车 Taycan 便采用了三电机。
高压:缩短充电时间、提高电机效率以延长里程的重要措施。纯电乘用车电压通常在 200-400V 之间,在同等功率下,当电压从 400V 提升到 800V 后,线路中通过的电流减少一半,产生的功率损耗更小,从而可以提高充电效率、缩短充电时长,进而改善新能源 汽车 使用体验。同时,工作电流的减少将降低功率损耗,继而可以进一步降低同样行驶里程中的电量消耗,从而延长 汽车 里程数。2021 年为我国 800V 高压快充元年,行业发展有望加速。
2021 年来,比亚迪(e 平台)、理想、小鹏、广汽(埃安)、吉利(极氪 001)、北汽(极狐)等车企纷纷布局 800V 快充技术,我国 800V 高压快充行业进入发展加速期。
高压化下对 汽车 电子各环节都将带来新挑战,目前应用仅停留在高端车型。新能源 汽车 要实现 800V 及以上高压平台兼容,除了需要提高电机、电池性能外,PTC、空调、OBC、高压线束等部件都需要重新适配,此外还面临更高电压带来的安全、热管理、成本等多方面挑战。受以上因素影响,目前 800V 高压平台应用还仅停留在部分高端车型。
油冷:采取合理的电机热管理设计可以进一步提升功率密度。电机的功率极限能力往往受限于电机温升极限,因此提高电机冷却散热能力可以快速提高功率密度,同时防止永磁体在高温时发生不可逆的“退磁”。目前常用的冷却方式为水冷,但其无法直接冷却热源,热量传递路径长、散热效率低;相较于水冷,油冷的优势在于油品具有不导电、不导磁、绝缘等性能,因此可以直接接触热源,形成更安全的热交换,提高散热效率。
故相同的绕组绝缘等级下,油冷电机可以承受更高的绕组电流,长期工作功率更高。
1.1.2. 电机控制器:IGBT 掣肘,单管并联纾困
电控系统通过电机控制算法发出信号驱动电机转动,进而控制整个车辆的动力输出。电控系统可分为主控制器和辅助控制器:
1)主控制器控制 汽车 的驱动电机;
2)辅助控制器控制 汽车 的转向电机、制动器、空调等。
我们本文重点讨论的电控系统主要指主控制器,主要由控制板(接受整车控制器的信号指令,运行电机控制算法,发出控制指令给功率板)、功率板(接受控制板指令,频繁通断 IGBT/MOSFET,控制电机转动)、壳体等组成,在控制器中,控制电路板、功率电路板成本主要在于 IGBT(绝缘栅双极型晶体管)、MOSFET(功率场效应晶体管)、MCU(微控制器)、电源芯片等半导体器件。
电控开发需要从硬件、软件两方面协同进步。类似电机,电机控制器的核心指标同样为功率密度、效率,软硬件的优化也是围绕这两大核心主题展开。
1)硬件角度,功率半导体单管并联方案将具备高性价比优势,或成 A 级以下车型主流硬件配置;而模组方案凭借更高可靠性,在中高端车型占据核心地位。器件方面,碳化硅有望逐步渗透。
2)软件角度,需要在可拓展性、易维护性、功能安全性等方面的不断提高。
功率半导体 IGBT 占电控成本比重较高,主要参与者为国外功率半导体巨头。根据盖世 汽车 数据,2017 年功率板的核心器件 IGBT 模块,占到电控总成本高达 37%。根据Yole,2020 年全球 IGBT 行业销售额 TOP15 公司中共 14 家为国外企业,而英飞凌(Infineon)更是凭借 14.33 亿美元的收入连续多年稳居全球第一。
功率半导体在新能源 汽车 中的应用可分为模组单管并联这两种路线,两者有各自适用的场景。模组为高度集成的功率半导体产品,保证了电控成品的可靠性良率高,同时降低了系统设计的复杂度。以 IGBT 为例,由于车规级功率半导体主要被英飞凌等外资占据,其往往提供特定参数规格的标准 IGBT 模组,然而模组参数往往不能很好适配具体需求,因此标准模组在不同功率的驱动电机控制系统中容易出现容量受限、结构安装等问题。若采用多个 IGBT 单管并联(通过复合母排、冷却装置等部件一同封装),则可以根据不同车型灵活设计冗余量,并且单管成本显著低于模块,在成本要求较高的A 级以下车型使用得更为普遍。但多个 IGBT 单管并联时,由于各单管参数的分散性、输出电流的不一致性,可能使系统可靠性较差,整个 IGBT 模组寿命也会缩短,对企业技术、制造能力考验大,故中高端 B 级以上车型通常使用可靠性更强的模组路线。
碳化硅功率器件可显著提高电控效率、功率密度等性能。碳化硅材料具有禁带宽度大、热导率高、电子饱和迁移速率高等性质,相比硅基 IGBT,碳化硅元器件体积更小、频率更高、开关损耗更小,可以使电驱动系统在高压、高温下保持高速稳定运行(硅基IGBT 只能在 200 以下的环境中工作)。根据意法半导体,在 400V 电压平台下,相较于硅基 IGBT,碳化硅功率件有 2-4%的效率提升;在 750V 电压平台下,碳化硅器件有3.5-8%的效率提升。
越来越多的高端车型已采用碳化硅电控。
1)车企角度,2021 年奥迪 e-tron GT 与福特 Mach E、特斯拉 Model S 等新车型也纷纷采用了碳化硅器件。2021 年 10 月,通用 汽车 与 Wolfspeed 签订了碳化硅供应协议,在原材料上抢先布局。国内车企也不断布局碳化硅,比亚迪发布了碳化硅车系平台 e-Platform 3.0,小鹏 G9、蔚来 ET7 等采用碳化硅电控的车型也有望在 2022 年交付。
2)供应商角度,根据精进电动招股说明书,公司采用全 SiC 模块,可以使控制器的功率提高 20kW 同时使其重量减少 6kg,逆变器尺寸缩小 43%。根据英搏尔,碳化硅电机控制器的损耗下降了 5%,电驱动系统整体 NEDC 平均效率提升 3.6%,整车 NEDC 续航提升 30km、增幅达 5.8%。
除了电机控制器外,碳化硅器件在 OBC、DC/DC、无线充电等“小三电”中也有应用。例如,欣锐 科技 早于 2013 年正式将 Wolfspeed 的碳化硅方案应用于 OBC 产品,2021 年为比亚迪 DMi 车型提供碳化硅电源类产品。目前制约碳化硅器件应用的主要因素为成本,伴随着未来碳化硅产业链的发展完善,相关器件应用渗透率将稳步提升。
软件:电控的进步体现在可拓展性、易维护性、功能安全性等方面的不断提高。
1)可拓展性:电控软件开发通常会使用 AUTOSAR 工具链(B 级及以上车把 AUTOSAR 作为“标配”)。AUTOSAR(AUTOmotive Open System Architecture, 汽车 开放系统架构)是由全球各大 汽车 整车厂、汽零供应商、 汽车 电子软件系统公司联合建立的一套标准协议,旨在有效地管理日趋复杂的 汽车 电子软件系统。AUTOSAR 规范的运用使得不同结构的电子控制单元的接口特征标准化、模块化,应用软件具备更好的可扩展性、可移植性,缩短开发周期。
2)易维护性:是指在软件后续使用过程中,及时实现远程更新升级与性能优化。OTA(Over-the-Air)技术可以降低维护成本,创造新的收入来源,目前已经在 汽车 行业包括其控制器总成上持续推广。3)安全性,电驱动系统的控制器总成对新能源 汽车 的动力输出进行直接的调节控制,是保证安全性的重要一环。在 汽车 行业逐步引入 ISO26262 标准之后,基于功能安全的车用软件开发对电控软件提出了新的要求。
1.1.3. 减速器:单档路线为主,两档减速可以期待
电机高速化趋势明显,带动减速器向两档减速方向发展。减速器是影响电驱动系统整体 NVH 性能的关键。按照传动等级分类,减速器可以分为单级减速器、两档减速器以及两档以上减速器。在电机高速化的趋势下,减速器正在经历从单级到多档的产品演变过程。目前,丰田普锐斯和特斯拉 Model 3 电机转速均已达到了 17900rpm,国内车企转速略低,但基本也都达到了 16000rpm,下一步规划便是 18000-20000rpm,电机高速化性能的提升需要相应的高性能减速器来配套。
单级减速器结构简单、成本较低、体积小,因此目前仍为主流应用。但在高转速区间,单档减速器由于传动比单一,在最高或最低车速以及低负荷条件下,电驱动效率会下降,浪费电能而减少行驶里程,此外减速器高转速时会带来 NVH 等问题。
两档减速器在混动车中率先应用,纯电动车应用可以期待。相较于单档减速器,两档减速器一方面使驱动电机在更高效的区域运行,从而提升驱动系统效率。另一方面,采用两档减速器后,传动比可以做到更高, 汽车 动力性随之增加、减少百公里加速时间。
此外,采用两个档位后,驱动电机可以更加小型化、低速化,从而降低电机及电控的成本。目前,采埃孚、GKN、麦格纳、Taycan 等企业均已推出两档减速器产品。
1.2. 小三电:OBC、DC/DC、PDU
“小三电”是 OBC、DC/DC、PDU 三大类电源产品,三者一同搭建了 汽车 内部的“能源网络”。OBC(充电机)负责将来自电网的交流电转换成直流电给电池充电; 汽车 电气电子系统中,不同部件需要的电压等级不尽相同,故需要 DC/DC(直流-直流变换器)转换电压;PDU(高压配电盒)负责内部“电气能源网架”的互联互通。
半导体器件成本占比较高,部分仍依赖进口。根据威迈斯招股说明书,在电源产品中,半导体器件、电容电阻为主要成本构成,占比分别为 23%和 16%。而由于半导体器件与部分电容产品国产化水平较低,多数公司仍采用外资供应商为主。例如,威迈斯主要供应商为 TI、英飞凌、意法半导体、贵弥功等,2016-2018 年公司进口原材料金额占比分别为 22.30%、19.96%、28.71%,其中 IGBT、MOSFET 海外主要供货商英飞凌占比最高,2016-2018 年采购金额占比分别为 3.18%、6.61%、7.28%。
技术持续演进,集成化趋势同样显著,软硬件能力都将迎来考验。早期车载电源产品主要采用模拟控制技术,产品功能较为单一,配套的软件只具备检测功能,不能实现精准控制。之后车载电源产品向数字化技术转变,能够实现复杂的控制算法,实现输出参数的灵活调整和精准控制,提高了软件系统的操控性,包括车载电源的诊断、升级和参数调整等应用需求。下一代车载电源产品将向集成化转变,在硬件、软件、体积、重量四个维度实现创新突破。硬件上有望将进一步采用更高性能的碳化硅器件;软件上将开发过程转换为模型化编程及满足 AUTOSAR 的接口方式,提升软件稳定性和灵活性;在体积和重量上实现小型化、轻量化。
1.3. 集成化:1+1+1 3,深度集成方兴未艾
1+1+13,电驱动由最初“结构集成”向“深度系统集成”演进,集成化“多合一”总成产品成为主流趋势。以往动力系统的电机、电控、电源多单独采购,根据其电气、机械结构进行集成组装;随着新能源 汽车 零部件要求不断提高,“多合一”总成产品通过巧妙设计将电机、电控、减速器、电源“深度集成”,减少彼此间的连接器、冷却组件、高压线束等部件。“多合一”集成式系统相比分体式产品的优势主要体现在以下方面:
1)性能更优:降低了各部件之间连接部位的效率损耗,提高整车的 NVH 性能,从而提高了集成系统的可靠性;
2)成本更低:集成式电驱动系统可以减少车内部的高压线束、连接器数量,节约线束与连接器成本,从而使集成式系统更具有经济性。
3)更省空间:集成式产品体积更小、重量更轻,有利于节省车内空间。
集成化电驱动系统渗透率不断提升。根据 NE 时代新能源,2020 年/2022 年 1-4 月我国新能源乘用车“三合一”电驱动系统搭载量为 50.27/79.26 万台,渗透率为44.91%/61.63%,目前基本涵盖大部分 A 级车、B 级以上车型。
现有集成产品以“三合一”为主,集成度更高的“多合一”新产品也在不断问世。
根据 NE 时代新能源,2022 年 1-4 月新能源乘用车搭载的电驱动系统中,分体式、电机/电控“二合一”合计占比为 44%,“三合一”占比为 52%,“多合一”占比为 4%。同时,OBC、DC-DC、PDU 等充配电系统集成产品应用也不断增加,结合电驱系统集成产品将形成集成度更高的多合一平台。
华为 DriveOne“七合一”电驱动系统打造多合一集成新标杆,比亚迪和上汽变速器也陆续推出多合一产品。
1)华为七合一系统集成了 MCU、电机。减速器、DC-DC、 OBC、PDU、BCU 七大部件,具有开发简单、适配简单、布置简单、演进简单等优势。
相较于“三合一”,该产品体积减少 20%、重量减轻 15%。此外,华为 DriveOne 系统可实现 7dB 的超静音,并具有 80%NEDC 效率,提升整车驾驶体验。根据 NE 时代新能源,华为“三合一”电驱动总成已在长安 CS-GXNEV 和赛力斯 SF5 两款车型中得到应用,但目前其七合一产品还没有在整车中的应用案例。
2)比亚迪“海豚”八合一系统即成立VCU、BCU、PDU、DC-DC、OBC、MCU、电机、减速器八大部件;
3)上汽变速器威迈斯的七合一系统集成电机、电控、减速器、OBC、DC-DC、PDU、BCU 七大部件。
1.4. 总结:千亿空间市场广阔,技术变革推动天花板不断打开
据前文所述,新能源 汽车 电驱动、电源系统围绕“高效率区间、高功率密度”等核心性能,其技术迭代仍在演进,而且针对不同车企、不同车型大多需要“量身定制”。
截至 2022 年 4 月,国内电动车销量结构成“纺锤形”——B 级和 A00 级车型销量占比较高。分车型来看电驱动技术,1)A/B 级及以上中高端车型通常因价格较高、可降本空间大,性能要求高,故对“三合一”乃至“六合一/七合一”等更青睐,扁线、碳化硅有 望率先在中高端车型进行渗透。2)A00/A0 级的低端车型对成本要求更高,故倾向于采 购分体式产品,部分也会采用成本低的“三合一”。即使对同一级别车型,不同车企及电动化平台均有各自技术架构,需要电驱动企业去配合设计,故当前定制化水平仍较高。
1)技术变革带动需求结构变化:在电机技术方向上,扁线电机渗透率有望在未来5 年快速提升,我们假设 2025 年在电驱三合一市场的综合渗透率将达到 87%;在单车配套电机数量上,双电机目前仍主要应用于高端车型,我们假设 2025 年双电机在电驱三合一市场综合渗透率将达到 5%。在电控方向,由于碳化硅性能优势较强,近年应用增长较快,考虑其降本速度,我们假设碳化硅电控渗透率稳步提升、2025 年在电驱三合一市场综合渗透率达到 26%。
2)规模化带动价格下降:电机方面,扁线电机厂家近年产能扩展迅猛,我们预计规模化将带动价格快速下降,同时随着扁线电机渗透率提升,与圆线电机价格差异持续缩小,经济性更为突出;电控方面,碳化硅同样持续降本。
3)集成化占比提高:我们将电驱动电源市场分为分布式、二合一、三合一(含少量“多合一”),我们假设“三合一”渗透率不断提升、2025 年达到 59%(基本覆盖 A 级及以上的车型)
行业参与者可分为“三大阵营”:整车厂自供体系、动力系统集成商、第三方电驱动供应商。
1)整车厂自供体系(in-house):出于供应链安全、成本控制等考虑,整车厂多设立子公司或合资公司自供电驱动、电源产品,代表公司有特斯拉、比亚迪旗下的弗迪动力、蔚来旗下的蔚然动力、长城旗下的蜂巢能源等。
2)动力系统集成商(Tier1):通常为海外 汽车 零部件巨头,如联合电子、日电产、博世、大陆、博格华纳等,凭借深厚的技术、工艺等积淀拓展至新能源 汽车 领域,本身产品力强、产能规模大,且具备全球主流车企客户资源。
3)第三方电驱动供应商:近年来快速崛起,独立第三方根据业务侧重点可以分为电控为主、电机为主的厂商,但是在集成化的趋势下,企业通常会同时布局电机、电控、电源与“多合一”系统。根据公司业务结构差异,又可分为以下几类:
1) 整车厂自制 VS 向第三方外采:
我们认为,未来 5-10 年仍将是自主品牌与新势力车企崛起的机遇期。一方面由于新能源 汽车 更新换代速度要高于传统燃油车,相比外资品牌,自主品牌的“包袱”更小,能够更加快速地进行变革。另一方面,新能源 汽车 扎根本土,对消费者需求有更深刻的认知,可以敏锐捕捉到消费者需求变化并快速响应。
上述核心车企采购逻辑(自制 or 开放供应链)影响了第三方可触及的市场空间。
对于前述的“中高端、中端、中低端”市场,车企通常有各自的采购偏好:
2021 年/2025 年第三方供应商总体销量份额为 40%/60%。整车厂前期因新能车出货量相对不大,部分车企选择自制电驱动/电源系统,但后期随新能源车年销量过百万辆、车型品类丰富等,对自制体系的成本控制能力、快速研发能力、产能等都提出较大挑战。届时,我们预计第三方凭借技术平台完备,以标准化促定制化开发,叠加定点车型销量较大,规模效应强劲,在成本、开发速度、产能方面均具备更强竞争优势。不同于燃油车,电池、电驱作为新能源 汽车 中最重要的板块,如果全部外包给第三方供应商,那么留给车企的参与环节将大幅减少,这将不断降低产业壁垒,缩小盈利空间,因此从整车厂的经营战略来考虑,部分车企未来仍会坚持“部分自供”。综上,我们预计多数整车厂在性能要求苛刻的中高端平台(B 级及以上)部分采用自供体系、部分外供,中端、中低端市场的车型开放供应链给第三方。结合上一节不同品牌车的销量占比数据,我们测算 2021 年第三方供应商总体销量份额约 39.96%,至 2025 年份额有望提升至 60.38%。
2) 第三方供应商竞争焦点(第三方 VS 第三方):
国内主流厂家在技术上和海外 Tier1 的差异在逐步缩小。海外 Tier1 在传统车零部件研发生产上走在世界前列,但是近年来我国电驱动供应商在技术上不断实现突破,与国外先进水平差距逐步缩小,核心性能基本与海外 Tier1 相差不大,在新技术路线的布局方面也处于同一起跑线甚至领先一步。
高压化(基于碳化硅的电驱动产品):在电机方面,方正电机基于 800V 碳化硅平台的驱动电机目前已完成客户项目定点,有望于 2022Q3 量产。在电控方面,日立为保时捷 Taycna 提供了基于 Si-IGBT 技术的 800V 的逆变器。在电驱动总成方面,汇川技术、臻驱 科技 、中车时代等都已推出了应用碳化硅的驱动集成产品,其中汇川的第四代动力总成已在小鹏 800V 高压平台车型中实现量产。
扁线电机:方正电机、大洋电机、华域电动等生产的扁线电机均已得到应用,例如方正电机产品已量产配套蔚来 ET7,大洋电机已量产配套北汽 48V BSG。
解放/东风/福田/比亚迪等争相布局 电动重卡五大发展趋势了解下
【第一商用车网 原创】
“随着货运结构的调整、公转铁和公转水的运输方式的转移,长途货运需求将减少,短倒用车的需求将增加,电动重卡的需求也将进而增加。”
“政府部门已经看到电动重卡换电模式对某些应用场景的特殊优势,已开始考虑相关的鼓励政策和支持‘车电分离’新型商业模式的发展。”
“由于电动重卡突出的环保特点和优势,城市建成市政和运营用的重卡,电动化将会是长期鼓励的方向。”
近日,在华菱星马智能重卡产品推介会上,中国汽车技术研究中心有限公司汽车工程研究院院长、移动源污染物排放控制技术国家工程实验室副主任高继东,在现场分享了《电动重卡行业及技术趋势洞察》的主题演讲。他重点介绍了国内电动重卡发展的政策因素、发展现状和技术趋势。下面请看第一商用车网报道!
中国汽车技术研究中心有限公司汽车工程研究院院长、移动源污染物排放控制技术国家工程实验室副主任高继东
电动重卡发展存两大机会和两大动能 换电模式特殊优势凸显
高继东指出,近年来电动重卡市场发展火热,核心因素在于政策的推动,总结为“两大机会”和“两大动能”。
其中,《关于印发打赢蓝天保卫战三年行动计划的通知》(2018年6月发布)等文件明确推广环卫车、邮政车、港口、机场、铁路货场作业车使用新能源或清洁能源汽车,同时明确优化调整货物运输结构,推进大宗货物及中长距离货物运输向铁路和水路有序转移。这给电动重卡提供两大发展机会,一是随着环保的加严、城市空气质量达标的要求,将会促进城市建设、区市政、工程用车、港口等短倒用车的电动化;二是随着货运结构的调整、公转铁和公转水的运输方式的转移,将减少长途货运需求,增加短倒用车的需求,进而增加电动重卡的需求。
今年4月发布的《关于完善新能源汽车推广应用财政补贴政策的通知》明确,推动落实新能源汽车免限行、路权等支持政策,加大柴油货车治理力度,提供新能源汽车使用优势;部分省市已出台响应新能源货车路权优惠政策,如深圳、厦门等。路权政策的相关要求,为电动重卡的发展提供了动能。而电动重卡购置税相关财税支持延续至2022年底,及电动重卡补贴政策退坡低于其他类型新能源商用车,这为电动重卡的发展提供了第二个动能。
值得注意的是,政府部门已经看到电动重卡换电模式对某些应用场景的特殊优势,并开始考虑相关的鼓励政策和支持“车电分离”新型商业模式的发展。
今年两会的《国家政府工作报告》,明确提出新基建内容将“建设充电桩”扩展为“增加充电桩、换电站等设施”;2020年4月发布的《完善新能源汽车推广应用财政补贴政策的通知》,明确支持“车电分离”等新型商业模式发展;7月8日,工信部组织召开“车电分离”新型商业模式企业座谈会。目前颇受关注的华菱星马换电重卡,从驶入换电站、换好电池、到驶出换电站,整个过程只用了6分钟的时间,极大提高了换电重卡的运营效率。
2019年电动重卡销量暴涨665%?充电为主,少数探讨换电
在政策的推动下,目前包括一汽解放、东风公司、福田汽车、比亚迪、华菱汽车、大运汽车、宇通客车和开沃汽车等多家商用车企业已布局、开发电动重卡,并小批量运行;一些专用车领域的大咖和卡车领域的新势力也不甘落后,都有电动重卡产品推出。
据高继东介绍,从新能源汽车推荐车型目录来看,国内目前生产的电动重卡主要为环卫、市政车、牵引车、运输车和运输车相关的装备;从续航里程来看,最高可达到480公里;总质量集中在18吨、25吨、31吨这三个质量段,充电时长主要在1到2个小时,而且以快充为主;少数探讨换电重卡。
从销量规模来看,2018年新能源重卡市场全年销量不足800辆,2019年新能源重卡得到快速发展,销量规模超过5000辆,且全部为电动重卡,同比大涨665.35%。
2018-2019年新能源重卡企业前十强销量一览(单位:辆)
第一商用车网注意到,虽然2019年新能源重卡销量同比实现暴涨,但相比2019年重卡全年117.43万辆的总量,新能源重卡销量远不到重卡销量的1%。如此来看,我国电动重卡市场仍处于发展初期,要实现规模的大台阶,还有比较长一段路要走。
电动重卡发展需要七大关键技术支持 未来呈现五大趋势
为何政策都在鼓励电动重卡市场发展,却仍发展比较缓慢?高继东表示,要使电动重卡由产品层面转化为用户的正常需要,那么,它必须满足车辆对用户车辆使用的美好期待。
“电动重卡的用户是运输企业和终端使用者驾驶员。从驾驶员角度来看,它必须具有安全、可靠、使用便捷的特点,要有真正具体的应用场景,要有卓越的道路适应性和环境适应性。对于运营企业而言,它要体现运营管理要求和运营经济性,这就会对电动重卡智能化提出相关的需求。”对于“用户期待”,高继东这样描述道。据他介绍,这些美好期待的实现,需要安全性技术、可靠性技术、网联通信技术、智能驾驶技术、快充/换电技术、节能技术和集成化技术等七大关键技术的支持。
其中,节能技术方面,主要有长寿命高密度电池技术(代表产品有宁德时代的磷酸铁锂电池等),大功率高效的电驱系统(如华菱星马换电重卡使用的特百佳动力系统),基于用户工况的三电系统匹配、标定和优化,整车热管理的综合优化,轻量化技术,低风阻技术,行驶阻力控制和能量管理技术,制动能量回收技术。
安全技术方面,电动重卡要重点提升以结构安全为中心的被动安全系统,以ADAS系统应用为核心的主动安全系统,要高度关注高压电安全和系统安全设计,另外还有电池热管理和热失控预警技术。
集成化技术方面,随着电动重卡智能化的发展,电子控制器越来越多,为充分保障可靠性,分散的功能控制器将会向集成化的域控制器过渡,最终将会向中央控制平台发展,同时被控系统的集成化可有效降低重量,节约成本和占用空间。
快充/换电技术方面,制动电动汽车高效使用的主要因素——续航里程焦虑、自重过大和充电时间过长等。我们要迅速地提升安全可靠的快充和换电技术。目前,国家政策明显支持“车电分离”新型商业模式发展,鼓励企业进一步提升整车的安全性和可靠性,研发生产出先进的操作系统,电子电气架构和智能化、网联化特征的新能源产品。而电动重卡的换电技术可彻底解决等待问题,停车场地小,延长电池寿命,可有效降低车重、降低能耗,可填谷削峰,购车成本低。
智能驾驶技术方面,自动驾驶重卡在特殊场景或将先行使用,如港口、矿产,未来应用场景将进一步丰富。
网联通信技术方面,重卡电动化之后,车辆数据更容易采集及上传分析处理,可以进一步提升技术,优化交通领域的能源供给、车队管理等。
演讲最后,高继东对电动重卡市场趋势进行了总结,具体来看有以下五点:一是由于电动重卡突出的环保特点和优势,城市建成区市政及运营用重卡,电动化将会是长期鼓励的方向;二是对于一些特定场景,路线固定的短途运输、矿区、港口等具体的场景,换电重卡将有比较突出的使用优势;三是能量运用效率和运营效率将会是推动电动重卡推广的重要因素,但是安全、可靠的换电重卡技术的推出将会大大地提高运营效率;四是特定场景(包括港口、矿区等)的无人驾驶将会是电动重卡技术发展的又一重要方向;五是对于规模运营的电动重卡,网联通信技术的应用将会显著提升运营企业的运营质量和运营效率。
结束语
相比柴油重卡,电动重卡具有零排放、无污染、低噪音等优点,将成为城市减排目标的重要举措,尤其是短距离、线路固定的应用环境。
这两年,电动重卡的换电模式产品初露锋芒,徐工、华菱、北奔和福田争相大力推广。尤其是今年,政策方面明确将换电模式重点规划进来,7月23日,工信部副部长辛国斌更是公开表示鼓励企业研发换电模式车型,将完善技术标准和管理政策,支持北京、海南等开展试点推广(相关链接:工信部再次表态支持换电模式,下一步将出台相关政策)。
那么,换电重卡将会成为电动重卡市场进一步快速发展的突破口吗?
责任编辑:李秀芝
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
新能源汽车发展趋势是什么?
新能源汽车行的趋势是:电动化、智能化、网联化和共享化。
第一个就是电动化。汽车电动化就是汽车动力技术的电动化,即以电力驱动代替燃油驱动,也就是我们常说的汽车“新能源”。电动化的技术路线已经成为一个主流的趋势。氢能车在商用车或者说卡车这一块还是有一定的市场空间的,有可能会成为一个技术路线。
第二个趋势是智能化。自动驾驶技术是依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动操作的情况下,自动安全地操作机动车辆。其实我们现在买电动车,尤其是年轻人,更看重的不是电驱动,而是智能化。
第三个发展趋势是网联化。智能化现在炒的比较火热,但实际上完全自动驾驶,实际上在现有的这个条件是不可能实现的,因为现在都是单车智能,但实际上真的要实现无人驾驶的话,人和车、车和车、车和基础设施的互联互通是特别重要的。
第四个趋势就是共享化。未来如果真正的实现智能驾驶或者智能网联这些技术以后,共享出行这种商业模式实现的可能性是很大的,人们用车的成本会大大降低,用车的便利会大大增加,共享汽车将成为出行方式的主流。
新能源车发展现状
新能源汽车的官方定义是采用非常规车用燃料来作为动力来源,在这里主要包括:纯电动汽车、混合动力汽车、燃料电池电动汽车、氢发动机汽车等等。而在目前市场上,纯电车显然成为了新能源车的代表,混动和燃料电池线路齐头并进。
新能源汽车的发展前景及趋势
未来新能源汽车的发展趋势将会大步前进,有望取代燃油汽车。
一、新能源汽车发展迅速,
据公开数据显示,2020年上半年中国新能源汽车出口3.69万辆,同比增长140.7%;出口额11.02亿美元,同比增长271.6%;纯电动汽车出口2.15万辆,增幅为136%;出口额3.63亿美元,同比激增1122.9%。
二、新能源汽车的发展前景,
在能源和环保的压力下,新能源汽车无疑将成为未来汽车的发展方向。如果新能源汽车得到快速发展,以2020年中国汽车保有量1.4亿计算,可以节约石油3229万吨,替代石油3110万吨,节约和替代石油共6339万吨,相当于将汽车用油需求削减22.7%。
结合中国的能源资源状况和国际汽车技术的发展趋势,预计到2025年后,中国普通汽油车占乘用车的保有量将仅占50%左右,而先进柴油车、燃气汽车、生物燃料汽车等新能源汽车将迅猛发展。
新能源汽车发展的建议:
1、目前新能源汽车市场尚处于发展初期,在行业标准和规范等方面还不够完善,消费者对电动车的质量与安全问题还有更高期待。这也倒逼新能源汽车领域加速变革,实现行业的良性发展。
与此同时,也要加强高水平的国际开放合作,推动全球协同创新,让中国和各国一起,共同推动建设清洁美丽世界。
2、促进新能源汽车市场的发展,要强化创新驱动,瞄准技术制高点,企业要在个性化定制方面下功夫,推动品牌建设,要不断优化产业发展环境,推动新能源汽车市场健康有序发展。
硬件上有望将进一步采用更高性能的碳化硅器件;软件上将开发过程转换为模型化编程及满足 AUTOSAR 的接口方式,提升软件稳定性和灵活性;在体积和重量上实现小型化、轻量化。 1.3. 集成化:1+1+1 3,深度集成方兴未艾