文章目录:
- 1、递归算法是什么?
- 2、什么是递归?递归有什么用?
- 3、C语言,递归问题,简单的递归会,写难的很成问题!求解各路程序员帅哥(美女?)们这个递归用的多吗?
- 4、什么叫递归法
- 5、递归的原理解释
- 6、递归是什么?要详细解释
递归算法是什么?
递归算法(英语:recursion algorithm)在计算机科学中是指一种通过重复将问题分解为同类的子问题而解决问题的方法。
递归式方法可以被用于解决很多的计算机科学问题,因此它是计算机科学中十分重要的一个概念。绝大多数编程语言支持函数的自调用,在这些语言中函数可以通过调用自身来进行递归。
计算理论可以证明递归的作用可以完全取代循环,因此在很多函数编程语言(如Scheme)中习惯用递归来实现循环。
递归程序
在支持自调用的编程语言中,递归可以通过简单的函数调用来完成,如计算阶乘的程序在数学上可以定义为:
这一程序在Scheme语言中可以写作:
(define (factorial n) (if (= n 0) 1 (* n (factorial (- n 1)))))
不动点组合子
即使一个编程语言不支持自调用,如果在这语言中函数是第一类对象(即可以在运行期创建并作为变量处理),递归可以通过不动点组合子(英语:Fixed-point combinator)来产生。以下Scheme程序没有用到自调用,但是利用了一个叫做Z 算子(英语:Z combinator)的不动点组合子,因此同样能达到递归的目的。
(define Z (lambda (f) ((lambda (recur) (f (lambda arg (apply (recur recur) arg)))) (lambda (recur) (f (lambda arg (apply (recur recur) arg)))))))(define fact (Z (lambda (f) (lambda (n) (if (= n 0) 1 (* n (f (- n 1))))))))
这一程序思路是,既然在这里函数不能调用其自身,我们可以用 Z 组合子应用(application)这个函数后得到的函数再应用需计算的参数。
尾部递归
尾部递归是指递归函数在调用自身后直接传回其值,而不对其再加运算。尾部递归与循环是等价的,而且在一些语言(如Scheme中)可以被优化为循环指令。 因此,在这些语言中尾部递归不会占用调用堆栈空间。以下Scheme程序同样计算一个数字的阶乘,但是使用尾部递归:
(define (factorial n) (define (iter product counter) (if ( counter n) product (iter (* counter product) (+ counter 1)))) (iter 1 1))
能够解决的问题
数据的定义是按递归定义的。如Fibonacci函数。
问题解法按递归算法实现。如Hanoi问题。
数据的结构形式是按递归定义的。如二叉树、广义表等。
参考资料
百科-递归算法.百度百科[引用时间2018-4-2]
什么是递归?递归有什么用?
1、程序调用自身的编程技巧称为递归。递归做为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。
2、递归一般的作用用于解决三类问题:
(1)数据的定义是按递归定义的。(Fibonacci函数)
(2)问题解法按递归算法实现。
这类问题虽则本身没有明显的递归结构,但用递归求解比迭代求解更简单,如Hanoi问题。
(3)数据的结构形式是按递归定义的。
C语言,递归问题,简单的递归会,写难的很成问题!求解各路程序员帅哥(美女?)们这个递归用的多吗?
递归是比较常用的,因为递归算法写起来的程序代码简单,但递归程序的难度只在于数学模型,而与C语言无关,关键是要构建一个递归的数学模型,有了它,再转换成C语言并不难了
什么叫递归法
1、递归算法概念:
在函数或子过程的内部,直接或者间接地调用自己的算法。
2、基本信息:
递归算法是把问题转化为规模缩小了的同类问题的子问题。然后递归调用函数或过程来表示问题的解。一个过程或函数直接或间接调用自己本身,这种过程或函数叫递归过程或函数。
递归的原理解释
递归的原理解释:
递归,是函数实现的一个很重要的环节,很多程序中都或多或少的使用了递归函数。递归的意思就是函数自己调用自己本身,或者在自己函数调用的下级函数中调用自己。
递归之所以能实现,是因为函数的每个执行过程都在栈中有自己的形参和局部变量的拷贝,这些拷贝和函数的其他执行过程毫不相干。这种机制是当代大多数程序设计语言实现子程序结构的基础,是使得递归成为可能。假定某个调用函数调用了一个被调用函数,再假定被调用函数又反过来调用了调用函数。这第二个调用就被称为调用函数的递归,因为它发生在调用函数的当前执行过程运行完毕之前。而且,因为这个原先的调用函数、现在的被调用函数在栈中较低的位置有它独立的一组参数和自变量,原先的参数和变量将不受影响,所以递归能正常工作。程序遍历执行这些函数的过程就被称为递归下降。
程序员需保证递归函数不会随意改变静态变量和全局变量的值,以避免在递归下降过程中的上层函数出错。程序员还必须确保有一个终止条件来结束递归下降过程,并且返回到顶层。
递归是什么?要详细解释
递归是一种重要的编程技术。该方法用于让一个函数从其内部调用其自身。一个示例就是计算阶乘。0 的阶乘被特别地定义为 1。 更大数的阶乘是通过计算 1 * 2 * ...来求得的,每次增加 1,直至达到要计算其阶乘的那个数。
下面的段落是用文字定义的计算阶乘的一个函数。
“如果这个数小于零,则拒绝接收。如果不是一个整数,则将其向下舍入为相邻的整数。如果这个数为 0,则其阶乘为 1。如果这个数大于 0,则将其与相邻较小的数的阶乘相乘。”
要计算任何大于 0 的数的阶乘,至少需要计算一个其他数的阶乘。用来实现这个功能的函数就是已经位于其中的函数;该函数在执行当前的这个数之前,必须调用它本身来计算相邻的较小数的阶乘。这就是一个递归示例。
递归和迭代(循环)是密切相关的 — 能用递归处理的算法也都可以采用迭代,反之亦然。确定的算法通常可以用几种方法实现,您只需选择最自然贴切的方法,或者您觉得用起来最轻松的一种即可。
显然,这样有可能会出现问题。可以很容易地创建一个递归函数,但该函数不能得到一个确定的结果,并且不能达到一个终点。这样的递归将导致计算机执行一个“无限”循环。下面就是一个示例:在计算阶乘的文字描述中遗漏了第一条规则(对负数的处理) ,并试图计算任何负数的阶乘。这将导致失败,因为按顺序计算 -24 的阶乘时,首先不得不计算 -25 的阶乘;然而这样又不得不计算 -26 的阶乘;如此继续。很明显,这样永远也不会到达一个终止点。
因此在设计递归函数时应特别仔细。如果怀疑其中存在着无限递归的可能,则可以让该函数记录它调用自身的次数。如果该函数调用自身的次数太多,即使您已决定了它应调用多少次,就自动退出。
下面仍然是阶乘函数,这次是用 JScript 代码编写的。
// 计算阶乘的函数。如果传递了
// 无效的数值(例如小于零),
// 将返回 -1,表明发生了错误。若数值有效,
// 把数值转换为最相近的整数,并
// 返回阶乘。
function factorial(aNumber) {
aNumber = Math.floor(aNumber); // 如果这个数不是一个整数,则向下舍入。
if (aNumber 0) { // 如果这个数小于 0,拒绝接收。
return -1;
}
if (aNumber == 0) { // 如果为 0,则其阶乘为 1。
return 1;
}
else return (aNumber * factorial(aNumber - 1)); // 否则,递归直至完成。
ter) (if ( counter n) product (iter (* counter product)
来定义对象的无限集合。一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。2、递归一般的作用用于解决三类问题:(1)数据的定义是按递归定义的。(Fibonacci函数)(2)问题解法按递归算法实现。这类问题虽则本身没有明显
”要计算任何大于 0 的数的阶乘,至少需要计算一个其他数的阶乘。用来实现这个功能的函数就是已经位于其中的函数;该函数在执行当前的这个数之前,必须调用它本身来计算相邻的较小数的阶乘。这就是一个
模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。一般来说,递归需要有边界条件、递归前进段和递归返回段。当