linux虚拟终端源码分析_Linux虚拟终端

hacker|
123

文章目录:

求一段Linux操作系统源代码分析

Linux内核的配置系统由三个部分组成,分别是:

Makefile:分布在 Linux 内核源代码中的 Makefile,定义 Linux 内核的编译规则;

配置文件(config.in):给用户提供配置选择的功能;

配置工具:包括配置命令解释器(对配置脚本中使用的配置命令进行解释)和配置用户界面(提供基于字符界面、基于 Ncurses 图形界面以及基于 Xwindows 图形界面的用户配置界面,各自对应于 Make config、Make menuconfig 和 make xconfig)。

这些配置工具都是使用脚本语言,如 Tcl/TK、Perl 编写的(也包含一些用 C 编写的代码)。本文并不是对配置系统本身进行分析,而是介绍如何使用配置系统。所以,除非是配置系统的维护者,一般的内核开发者无须了解它们的原理,只需要知道如何编写 Makefile 和配置文件就可以。所以,在本文中,我们只对 Makefile 和配置文件进行讨论。另外,凡是涉及到与具体 CPU 体系结构相关的内容,我们都以 ARM 为例,这样不仅可以将讨论的问题明确化,而且对内容本身不产生影响。

2. Makefile

2.1 Makefile 概述

Makefile 的作用是根据配置的情况,构造出需要编译的源文件列表,然后分别编译,并把目标代码链接到一起,最终形成 Linux 内核二进制文件。

由于 Linux 内核源代码是按照树形结构组织的,所以 Makefile 也被分布在目录树中。Linux 内核中的 Makefile 以及与 Makefile 直接相关的文件有:

Makefile:顶层 Makefile,是整个内核配置、编译的总体控制文件。

.config:内核配置文件,包含由用户选择的配置选项,用来存放内核配置后的结果(如 make config)。

arch/*/Makefile:位于各种 CPU 体系目录下的 Makefile,如 arch/arm/Makefile,是针对特定平台的 Makefile。

各个子目录下的 Makefile:比如 drivers/Makefile,负责所在子目录下源代码的管理。

Rules.make:规则文件,被所有的 Makefile 使用。

用户通过 make config 配置后,产生了 .config。顶层 Makefile 读入 .config 中的配置选择。顶层 Makefile 有两个主要的任务:产生 vmlinux 文件和内核模块(module)。为了达到此目的,顶层 Makefile 递归的进入到内核的各个子目录中,分别调用位于这些子目录中的 Makefile。至于到底进入哪些子目录,取决于内核的配置。在顶层 Makefile 中,有一句:include arch/$(ARCH)/Makefile,包含了特定 CPU 体系结构下的 Makefile,这个 Makefile 中包含了平台相关的信息。

位于各个子目录下的 Makefile 同样也根据 .config 给出的配置信息,构造出当前配置下需要的源文件列表,并在文件的最后有 include $(TOPDIR)/Rules.make。

Rules.make 文件起着非常重要的作用,它定义了所有 Makefile 共用的编译规则。比如,如果需要将本目录下所有的 c 程序编译成汇编代码,需要在 Makefile 中有以下的编译规则:

%.s: %.c

$(CC) $(CFLAGS) -S $ -o $@

有很多子目录下都有同样的要求,就需要在各自的 Makefile 中包含此编译规则,这会比较麻烦。而 Linux 内核中则把此类的编译规则统一放置到 Rules.make 中,并在各自的 Makefile 中包含进了 Rules.make(include Rules.make),这样就避免了在多个 Makefile 中重复同样的规则。对于上面的例子,在 Rules.make 中对应的规则为:

%.s: %.c

$(CC) $(CFLAGS) $(EXTRA_CFLAGS) $(CFLAGS_$(*F)) $(CFLAGS_$@) -S $ -o $@

2.2 Makefile 中的变量

顶层 Makefile 定义并向环境中输出了许多变量,为各个子目录下的 Makefile 传递一些信息。有些变量,比如 SUBDIRS,不仅在顶层 Makefile 中定义并且赋初值,而且在 arch/*/Makefile 还作了扩充。

常用的变量有以下几类:

1) 版本信息

版本信息有:VERSION,PATCHLEVEL, SUBLEVEL, EXTRAVERSION,KERNELRELEASE。版本信息定义了当前内核的版本,比如 VERSION=2,PATCHLEVEL=4,SUBLEVEL=18,EXATAVERSION=-rmk7,它们共同构成内核的发行版本KERNELRELEASE:2.4.18-rmk7

2) CPU 体系结构:ARCH

在顶层 Makefile 的开头,用 ARCH 定义目标 CPU 的体系结构,比如 ARCH:=arm 等。许多子目录的 Makefile 中,要根据 ARCH 的定义选择编译源文件的列表。

3) 路径信息:TOPDIR, SUBDIRS

TOPDIR 定义了 Linux 内核源代码所在的根目录。例如,各个子目录下的 Makefile 通过 $(TOPDIR)/Rules.make 就可以找到 Rules.make 的位置。

SUBDIRS 定义了一个目录列表,在编译内核或模块时,顶层 Makefile 就是根据 SUBDIRS 来决定进入哪些子目录。SUBDIRS 的值取决于内核的配置,在顶层 Makefile 中 SUBDIRS 赋值为 kernel drivers mm fs net ipc lib;根据内核的配置情况,在 arch/*/Makefile 中扩充了 SUBDIRS 的值,参见4)中的例子。

4) 内核组成信息:HEAD, CORE_FILES, NETWORKS, DRIVERS, LIBS

Linux 内核文件 vmlinux 是由以下规则产生的:

vmlinux: $(CONFIGURATION) init/main.o init/version.o linuxsubdirs

$(LD) $(LINKFLAGS) $(HEAD) init/main.o init/version.o

--start-group

$(CORE_FILES)

$(DRIVERS)

$(NETWORKS)

$(LIBS)

--end-group

-o vmlinux

可以看出,vmlinux 是由 HEAD、main.o、version.o、CORE_FILES、DRIVERS、NETWORKS 和 LIBS 组成的。这些变量(如 HEAD)都是用来定义连接生成 vmlinux 的目标文件和库文件列表。其中,HEAD在arch/*/Makefile 中定义,用来确定被最先链接进 vmlinux 的文件列表。比如,对于 ARM 系列的 CPU,HEAD 定义为:

HEAD := arch/arm/kernel/head-$(PROCESSOR).o

arch/arm/kernel/init_task.o

表明 head-$(PROCESSOR).o 和 init_task.o 需要最先被链接到 vmlinux 中。PROCESSOR 为 armv 或 armo,取决于目标 CPU。 CORE_FILES,NETWORK,DRIVERS 和 LIBS 在顶层 Makefile 中定义,并且由 arch/*/Makefile 根据需要进行扩充。 CORE_FILES 对应着内核的核心文件,有 kernel/kernel.o,mm/mm.o,fs/fs.o,ipc/ipc.o,可以看出,这些是组成内核最为重要的文件。同时,arch/arm/Makefile 对 CORE_FILES 进行了扩充:

# arch/arm/Makefile

# If we have a machine-specific directory, then include it in the build.

MACHDIR := arch/arm/mach-$(MACHINE)

ifeq ($(MACHDIR),$(wildcard $(MACHDIR)))

SUBDIRS += $(MACHDIR)

CORE_FILES := $(MACHDIR)/$(MACHINE).o $(CORE_FILES)

endif

HEAD := arch/arm/kernel/head-$(PROCESSOR).o

arch/arm/kernel/init_task.o

SUBDIRS += arch/arm/kernel arch/arm/mm arch/arm/lib arch/arm/nwfpe

CORE_FILES := arch/arm/kernel/kernel.o arch/arm/mm/mm.o $(CORE_FILES)

LIBS := arch/arm/lib/lib.a $(LIBS)

5) 编译信息:CPP, CC, AS, LD, AR,CFLAGS,LINKFLAGS

在 Rules.make 中定义的是编译的通用规则,具体到特定的场合,需要明确给出编译环境,编译环境就是在以上的变量中定义的。针对交叉编译的要求,定义了 CROSS_COMPILE。比如:

CROSS_COMPILE = arm-linux-

CC = $(CROSS_COMPILE)gcc

LD = $(CROSS_COMPILE)ld

......

CROSS_COMPILE 定义了交叉编译器前缀 arm-linux-,表明所有的交叉编译工具都是以 arm-linux- 开头的,所以在各个交叉编译器工具之前,都加入了 $(CROSS_COMPILE),以组成一个完整的交叉编译工具文件名,比如 arm-linux-gcc。

CFLAGS 定义了传递给 C 编译器的参数。

LINKFLAGS 是链接生成 vmlinux 时,由链接器使用的参数。LINKFLAGS 在 arm/*/Makefile 中定义,比如:

# arch/arm/Makefile

LINKFLAGS :=-p -X -T arch/arm/vmlinux.lds

6) 配置变量CONFIG_*

.config 文件中有许多的配置变量等式,用来说明用户配置的结果。例如 CONFIG_MODULES=y 表明用户选择了 Linux 内核的模块功能。

.config 被顶层 Makefile 包含后,就形成许多的配置变量,每个配置变量具有确定的值:y 表示本编译选项对应的内核代码被静态编译进 Linux 内核;m 表示本编译选项对应的内核代码被编译成模块;n 表示不选择此编译选项;如果根本就没有选择,那么配置变量的值为空。

2.3 Rules.make 变量

前面讲过,Rules.make 是编译规则文件,所有的 Makefile 中都会包括 Rules.make。Rules.make 文件定义了许多变量,最为重要是那些编译、链接列表变量。

O_OBJS,L_OBJS,OX_OBJS,LX_OBJS:本目录下需要编译进 Linux 内核 vmlinux 的目标文件列表,其中 OX_OBJS 和 LX_OBJS 中的 "X" 表明目标文件使用了 EXPORT_SYMBOL 输出符号。

M_OBJS,MX_OBJS:本目录下需要被编译成可装载模块的目标文件列表。同样,MX_OBJS 中的 "X" 表明目标文件使用了 EXPORT_SYMBOL 输出符号。

O_TARGET,L_TARGET:每个子目录下都有一个 O_TARGET 或 L_TARGET,Rules.make 首先从源代码编译生成 O_OBJS 和 OX_OBJS 中所有的目标文件,然后使用 $(LD) -r 把它们链接成一个 O_TARGET 或 L_TARGET。O_TARGET 以 .o 结尾,而 L_TARGET 以 .a 结尾。

LINUX内核源代码分析怎么样

Linux拥有现代操作系统所有的功能,如真正的抢先式多任务处理、支持多用户,内存保护,虚拟内存,支持SMP、UP,符合POSIX标准,联网、图形用户接口和桌面环境。具有快速性、稳定性等特点。本书通过分析Linux的内核源代码,充分揭示了Linux作为操作系统的内核是如何完成保证系统正常运行、协调多个并发进程、管理内存等工作的。现实中,能让人自由获取的系统源代码并不多,通过本书的学习,将大大有助于读者编写自己的新程序。本书附赠光盘,有关光盘内容请见附录C。

什么是虚拟终端?

虚拟终端是在个人电脑上虚拟的一个终端以及为此目的而写的软件。虚拟终端的目的是达到个人电脑及其用户能够与大型计算机的连接。一般来说需要连接的大型计算机是IBM的大型计算机或者所谓的超小型计算机(过去往往是迪吉多的VAX)。

虚拟终端使得个人电脑的用户可以直接使用他的个人电脑来与大型计算机联系,而不必使用专门的终端。

通过虚拟终端的软件虚拟终端还可以扩展大型计算机的标准终端的功能,通过虚拟终端不但可以将个人电脑上的数据传递给大型计算机,而且还可以将大型计算机的数据传递给个人电脑,并在个人电脑上继续加工。

一般大型计算机的终端是字母式的输入和输出接口,因此一个虚拟终端至少需要一个能够模拟这样的字母式(比如ASCII)输入和输出接口的能力。最常见的平台是图像式的用户表面。要使得新的、图像式的程序能够使用老的字母式的或者没有图像式输入和输出能力的程序也需要虚拟终端。

现代的大型计算机也内部使用虚拟终端,这样它们可以向老的、需要终端的程序假装一个终端,而实际上它则将程序的显示转到显示卡上。比如Linux以及其它大多数基于个人电脑的类似Unix的操作系统假装有六至十个这样的“虚拟”的终端。

字母程序 --- 虚拟终端 --- 图像显示

shell --- xterm --- X11

结构

虚拟终端使得一个字母式的程序可以通过图形用户界面与用户通讯。它们使得用户可以使用不能直接使用图像接口的程序(比如因为在它们编程时还没有图像接口,或者因为字母式接口比较简单)。虚拟终端向字母式程序“假装”出一个字母终端,而向图像接口“假装”出一个图像式的程序。

工作方式

虚拟终端完成一个终端程序的任务。不过一个虚拟终端是一个普通的、在一个操作系统上、在电脑中央处理器上运行的普通程序,而不是一个存储在终端唯读记忆体中的、在终端的中央处理器上运行的程序。虚拟终端分析一个字母式的程序的输出,将它转换为图像接口(比如X11)的输出。

终端窗口内的键盘输入传递给大型计算机中与终端连接的行程,一般这个行程是一个命令行解释器。这个行程以为自己是与一个终端相连,而实际上它是与一个虚拟终端相连。

5条大神的评论

  • avatar
    访客 2022-07-13 上午 05:57:32

    个子目录中,分别调用位于这些子目录中的 Makefile。至于到底进入哪些子目录,取决于内核的配置。在顶层 Makefile 中,有一句:include arch/$(ARCH)

  • avatar
    访客 2022-07-13 上午 07:48:35

    GS 是链接生成 vmlinux 时,由链接器使用的参数。LINKFLAGS 在 arm/*/Makefile 中定义,比如:# arch/arm/MakefileLINKFLAGS

  • avatar
    访客 2022-07-13 上午 05:06:38

    文章目录:1、求一段Linux操作系统源代码分析2、LINUX内核源代码分析怎么样3、什么是虚拟终端?求一段Linux操作系统源代码分析Linux内核的配置系统由三个部分组成,分别是:Makefile:分布在 Linux 内核源代码中的 Makefil

  • avatar
    访客 2022-07-13 上午 06:56:56

    下所有的 c 程序编译成汇编代码,需要在 Makefile 中有以下的编译规则:%.s: %.c$(CC) $(CFLAGS) -S $ -o $@有很多子目录下都有同样的要求,就需要在各自的 Makefile 中包含此编译规则,这会比较麻烦。而 Linux 内核中则把此类的编译规则统一放置

  • avatar
    访客 2022-07-13 上午 10:56:58

    本KERNELRELEASE:2.4.18-rmk72) CPU 体系结构:ARCH在顶层 Makefile 的开头,用 ARCH 定义目标 CPU 的体系结构,比如 ARCH:=arm 等。许多子目录的 Makefile

发表评论