文章目录:
逻辑思维测试题
请对照下列各题做出最适合你的选择,看看你的抽象思维能力如何。
1.你说话富有条理吗?
A.是 B.不能确定 C.不
2.看完一篇文章,你是否马上能说出文章的主题?
A.通常能 B.有时能 C.不能
3.你写信时常常觉得不知如何表达吗?
A.不 B.不能确定 C.是
4.你是否发现老师讲课中的某些错误?
A.常常能 B.偶尔能 C.不能
5.中学数学课程对你来说还是比较轻松的吗?
A.是 B.不能确定 C.不
6.你是否能轻易找到一些笑料使大家都笑起来?
A.常常能 B.有时能 C.不能
7.你对世界上很多事物及其活动规律看得比较透彻吗?
A.是 B.不能确定 C.不
8.你很轻松地就可以弄清一篇文章的要点吗?
A.通常能 B.有时能 C.不能
9.当你告诉别人什么事情时,你常会有词不达意的感觉吗?
A.不 B.不能确定 C.是
10.考试时你常常感到时间不够而来不及做完所有题目吗?
A.不 B.不能确定 C.是
11.你的考试成绩不坏吗?
A.对 B.不能确定 C.不
12.你写作文时曾发生过离题的现象吗?
A.多次发生 B.偶尔发生 C.不曾发生
13.当你发觉说错话时,是否窘得说不出话来?
A.不 B.不能确定 C.是
14.有人说你说话常不着边际吗?
A.不 B.不能确定 C.是
15.在电影和电视剧中,你发现过一些不合情理的情节吗?
A.多次发现 B.偶尔发现 C.没有
16.你在下棋、打扑克这些智力游戏中常能取胜吗?
A.是 B.不能确定 C.不
17.你常不假思索地接受别人的意见吗?
A.不 B.不能确定 C.是
18.你善于分析问题吗?
A.是 B.不能确定 C.不
19.你的同伴困惑不解时是否会询问你?
A.是 B.不能确定 C.不
20.你觉得想问题是件很累的事吗?
A.是 B.不能确定 C.不
21.在朋友面前发觉自己不小心做了不得体的事时,你是否能迅速找一个台阶下(如开一句玩笑),使自己摆脱困境?
A.是 B.不能确定 C.不
22.你和同学讨论问题时,是否常出一些很有价值的主意?
A.是 B.不能确定 C.不
23.有时你会将问题反向考虑吗(7
A.是 B.不能确定 C.不
24.你的作文曾经获奖或被公开刊出吗?
A.是 B.不能确定 C.不
25.你常与别人辩论吗?
A.是 B.不能确定 C.不
26.几个同学为一件事争论不休时,你能从他们各自的说法中找出共同点,而把他们的观点统一起来吗?
A.通常能 B.有时能 C.不能
27.大多数情况下,你只要一看小说(或影视)故事的开头,就能正确猜到结局如何?
A.是 B.不能确定 C.不
28.你的提议常被别人忽视或否定吗?
A.不 B.不能确定 C.是
29.在别人与你寒暄尚未切入正题之前,你常常已大致猜到对方的意图吗?
A.是 B.不能确定 C.不
30.你爱看侦探小说或影视片吗?
A.是 B.不能确定 C.不
看看你的得分:
每题答A记2分,答B记1分,答C记0分。各题得分相加,统计总分。
0~19分:你讲话、想问题缺乏逻辑,思维能力较弱。
20~40分:你的抽象逻辑思维能力一般。
41~60分:你的抽象逻辑思维能力较强。你善于抓住问题的关键,说话也显得有条有理。
黑客相关的题目
黑客攻击手段可分为非破坏性攻击和破坏性攻击两类。非破坏性攻击一般是为了扰乱系统的运行,并不盗窃系统资料,通常采用拒绝服务攻击或信息炸弹;破坏性攻击是以侵入他人电脑系统、盗窃系统保密信息、破坏目标系统的数据为目的。下面为大家介绍4种黑客常用的攻击手段(小编注:密码破解当然也是黑客常用的攻击手段之一)。
后门程序
由于程序员设计一些功能复杂的程序时,一般采用模块化的程序设计思想,将整个项目分割为多个功能模块,分别进行设计、调试,这时的后门就是一个模块的秘密入口。在程序开发阶段,后门便于测试、更改和增强模块功能。正常情况下,完成设计之后需要去掉各个模块的后门,不过有时由于疏忽或者其他原因(如将其留在程序中,便于日后访问、测试或维护)后门没有去掉,一些别有用心的人会利用穷举搜索法发现并利用这些后门,然后进入系统并发动攻击。
信息炸弹
信息炸弹是指使用一些特殊工具软件,短时间内向目标服务器发送大量超出系统负荷的信息,造成目标服务器超负荷、网络堵塞、系统崩溃的攻击手段。比如向未打补丁的 Windows 95系统发送特定组合的 UDP 数据包,会导致目标系统死机或重启;向某型号的路由器发送特定数据包致使路由器死机;向某人的电子邮件发送大量的垃圾邮件将此邮箱“撑爆”等。目前常见的信息炸弹有邮件炸弹、逻辑炸弹等。
拒绝服务
又叫分布式D.O.S攻击,它是使用超出被攻击目标处理能力的大量数据包消耗系统可用系统、带宽资源,最后致使网络服务瘫痪的一种攻击手段。作为攻击者,首先需要通过常规的黑客手段侵入并控制某个网站,然后在服务器上安装并启动一个可由攻击者发出的特殊指令来控制进程,攻击者把攻击对象的IP地址作为指令下达给进程的时候,这些进程就开始对目标主机发起攻击。这种方式可以集中大量的网络服务器带宽,对某个特定目标实施攻击,因而威力巨大,顷刻之间就可以使被攻击目标带宽资源耗尽,导致服务器瘫痪。比如1999年美国明尼苏达大学遭到的黑客攻击就属于这种方式。
网络监听
网络监听是一种监视网络状态、数据流以及网络上传输信息的管理工具,它可以将网络接口设置在监听模式,并且可以截获网上传输的信息,也就是说,当黑客登录网络主机并取得超级用户权限后,若要登录其他主机,使用网络监听可以有效地截获网上的数据,这是黑客使用最多的方法,但是,网络监听只能应用于物理上连接于同一网段的主机,通常被用做获取用户口令。
谁有逻辑思维测试题??越多越好
1)两地旅行
我租了一辆旅游小车,离开阿姆斯特丹,向花城亚里士梅尔出发了。
在阿姆斯特丹和亚里士梅尔两城正中间有一K镇,镇上有两个 朋友A和B也乘上了我们的车。三人愉快地度过一天的旅行后,准备返回,可是A决定在K镇下车,B随我回阿姆斯特丹。现在仍按荷兰式的均摊方式,准备各付自己的旅程费。从阿姆斯特升到亚里士梅尔规定往返要付24盾 (约合20元人民币)。K域位于两城的正中间,那么三个人应各付多少钱?
答案:我付10.7盾,A付5.3盾,B付8盾
我的思路:设K镇与亚里士梅尔或阿姆斯特丹的路程为X,则A走了2段路程,B走了3段路程,我走了4段路程,按比例分配旅费即可。
2)耕地能手和播种能手
新德里郊区有个庄园主,雇了两个小工为他种小麦。其中A是 一个耕地能手,但
不擅长播种;而B耕地很不熟练,但却是播种的能手。庄园主决定种10公亩地的小麦,让他俩各包一半,于是A从东头开始耕地,B从西头开始耕。A耕地一亩用20分钟,B却用40分钟,可是B播种的速度却比A快3倍。 耕播结束后,庄园主根据他们的工作量给了他俩100卢比工钱。
他俩怎样分才合理呢?
答案:每人一半,各拿50卢比。因为不论每个人干活速度如何,庄园主早就决定他们两人 "各包一半"。因此他们二人的耕地、播种面积 都是一样的,工钱当然也应各拿一半。
我的思路:
工钱是按面积算的,只要抓住“各包一半”即可。
3)叫喊几分钟
沙漠中的骆驼商队,通常把体弱的骆驼夹在中间,强壮的走在两头,驼队排成一行
按顺序前迸。商人为了区别它们,就在每一头骆驼身上盖上火印,枝而引顶序,在给骆驼打火印时,它们都要痛得叫喊5分钟。
问:若某个商队共有10头骆驼,盖火印时的叫喊声最少要听几分钟,假如叫声是不重
叠在一起的。
答案:45分钟。开始你也许会想是5x10=50。可是因为火印盖到第九只骆驼,剩下的一只,他们就不盖了,因为不盖也能与其他的区别。
启发:做人要灵活。
4)应该找多少零钱
进了一家礼品商店,看到一架照相机,这种照相机在日本连皮套 共值3万日元,可这家商店要310美元 (要美元,不要泰国铢),折合日元约为4万多日元。照相机的价钱比皮套贵300美元,剩下的就是皮套的价钱。请问:现买一副皮套拿出100美元,应该找多少零钱?
答案:不仔细考虑,就会中计受骗。假如皮套是10美元,那么照相机比它贵300美元,即310美元。加在一起就成为320美元。正确答案 应该是皮套5美元,应找零钱95美元。这样,照相机为305美元,加皮套共310美元,才符合计算。
我的思路:设皮套为X,照相机为300+X,即2X+300=310,X=5。只是用到初中的数学知识。
5)大小灯球
"鸡兔同笼"的算题和算法,在中国古代的民间广为流传,甚至被誉为"了不起的妙算"。以至清代小说家李汝珍,把它写到自己的 小说《镜花缘》中。
《镜花缘》写了一个才女米兰芬计算灯球的故事——
有一次米兰芬到了一个阔人家里,主人请她观赏楼下大厅里五彩缤纷、高低错落、宛若群星的大小灯球。
主人告诉她:"楼下的灯分两种:一种是灯下一个大球,下缀两个小球;另一种是灯下一个大球,下缀四个小球。楼下大灯球共360 个,小灯球1200个。"
主人请她算一算两种灯各有多少。
答案:一个大灯球下缀两个小灯球当是鸡,一个大灯球下缀四个小灯球当是兔。 (360x4-1200)/(4-2)=240/2=120 (一大二小灯的盏数) 360-120=240(一大四小灯的盏数)
我的思路:设每一种灯为X,另一种灯为Y,则有
X+Y=360;2X+4Y=1200;解得:X=120,Y=240。
6)粗木匠的难题
木匠拿来一根雕刻着花纹的小木柱说:
"有一次,一位住在伦敦的学者,拿给我一根3英尺长,宽和厚均为1英尺的木料,希望我将它砍削、雕刻成木柱,如你们现在看到 的样子。学者答应补偿我在做活时砍去的木材。我先将这块方木称一称,它恰好重30磅,而要做成的这根柱子只重20磅。因此,我从方木上砍掉了1立方英尺的木材,即原来的三分之一。但学者拒不承认,他说,不能按重量来计算砍去的体积,因为据说方木的中间部分要重些,也可能相反。请问,我在这种情况下怎样向好挑剔的学者证明,究竟砍掉了多少木材?"
乍一看,这个问题很困难,但答案却如此简单,以致粗木匠的办法人人皆知。这种小聪明在日常生活中也是很有用的。
答案:木匠说,他做一个箱子,内部的尺寸精确得与最初的方木相同, 即是3x1x1。然后,他把己雕刻好的木柱放入箱内,而在空档处塞满干沙土。然后,他细心地振动箱子,使得箱内沙土填实并与箱口齐平。然后,木匠轻轻取出木柱,不带出任何沙粒,再把箱内的沙土捣 平,量出其深度便能证明,木柱能占的空间恰为2立方英尺。这就是 说,木匠砍削掉一立方英尺的木材。
启发:做这题时让我想起了〈〈称象〉〉的故事。
7)鸟与木柱
有一群鸟,还有一堆木柱, 如果一只鸟落在一个柱的话, 剩下一个鸟没地方落
如果一个木柱两只鸟的话, 那就多了一个木柱, 问有多少只鸟, 多少个木柱?
答案:给个干扰答案: 设鸟=X,木柱=Y ;X=Y+1 ,Y=X/2+1 ;X=?Y=? 四只鸟,三只木桩。
但不全对,如果是谦让的鸟,它们就飞走了,另找他地。 如果是贪婪的鸟,那么它们为争抢多出来的木桩 就会大打出手。
所以。答案是四只木桩,零只鸟。
启发:要留意生活。
1.IBM社会招聘笔试题 1.一个粗细均匀的长直管子,两端开口,里面有4个白球和4个黑球,球的直径、两端开口的直径等于管子的内径,现在白球和黑球的排列是wwwwbbbb,要求不取出任何一个球,使得排列变为bbwwwwbb。
2.一只蜗牛从井底爬到井口,每天白天蜗牛要睡觉,晚上才出来活动,一个晚上蜗牛可以向上爬3尺,但是白天睡觉的时候会往下滑2尺,井深10尺,问蜗牛几天可以爬出来?
3.在一个平面上画1999条直线最多能将这一平面划分成多少个部分? 4.在太平洋的一个小岛上生活着土人,他们不愿意被外人打扰,一天,一个探险家到了岛上,被土人抓住,土人的祭司告诉他,你临死前还可以有一个机会留下一句话,如果这句话是真的,你将被烧死,是假的,你将被五马分尸,可怜的探险家如何才能活下来?
5.怎样种四棵树使得任意两棵树的距离相等。
6.27个小运动员在参加完比赛后,口渴难耐,去小店买饮料,饮料店搞促销,凭三个空瓶可以再换一瓶,他们最少买多少瓶饮料才能保证一人一瓶?
7.有一座山,山上有座庙,只有一条路可以从山上的庙到山脚,每周一早上8点,有一个聪明的小和尚去山下化缘,周二早上8点从山脚回山上的庙里,小和尚的上下山的速度是任意的,在每个往返中,他总是能在周一和周二的同一钟点到达山路上的同一点。例如,有一次他发现星期一的8点30和星期二的8点30他都到了山路靠山脚的3/4的地方,问这是为什么?
8、美国有多少辆汽车?
9、将汽车钥匙插入车门,向哪个方向旋转就可以打开车锁?
10你让某些人为你工作了七天,你要用一根金条作为报酬。这根金条要被分成七块。你必须在每天的活干完后交给他们一块。如果你只能将这根金条切割两次,你怎样给这些工人分?
11一列火车以每小时15英里的速度离开洛杉矶,朝纽约进发。另外一列火车以每小时20英里的速度离开纽约,朝洛杉矶进发。如果一只每小时飞行25英里的鸟同时离开洛杉矶,在两列火车之间往返飞行,请问当两列火车相遇时,鸟飞了多远?
12假设一张圆盘像唱机上的唱盘那样转动。这张盘一半是黑色,一半是白色。假设你有数量不限的一些颜色传感器。要想确定圆盘转动的方向,你需要在它周围摆多少个颜色传感器?它们应该被摆放在什么位置?
13假设时钟到了12点。注意时针和分针重叠在一起。在一天之中,时针和分针共重叠多少次?你知道它们重叠时的具体时间吗?
14你有两个罐子,分别装着50个红色的玻璃球和50个蓝色的玻璃球。随意拿起一个罐子,然后从里面拿出一个玻璃球。怎样最大程度地增加让自己拿到红球的机会?利用这种方法,拿到红球的几率有多大?
15中间只隔一个数字的两个奇数被称为奇数对,比如17和19。证明奇数对之间的数字总能被6整除(假设这两个奇数都大于6)。现在证明没有由三个奇数组成的奇数对。
16一个屋子有一个门(门是关闭的)和3盏电灯。屋外有3个开关,分别与这3盏灯相连。你可以随意操纵这些开关,可一旦你将门打开,就不能变换开关了。确定每个开关具体管哪盏灯。
17假设你有8个球,其中一个略微重一些,但是找出这个球的惟一方法是将两个球放在天平上对比。最少要称多少次才能找出这个较重的球?
18假设你站在镜子前,抬起左手,抬起右手,看看镜中的自己。当你抬起左手时,镜中的自己抬起的似乎是右手。可是当你仰头时,镜中的自己也在仰头,而不是低头。为什么镜子中的影像似乎颠倒了左右,却没有颠倒上下?
答案:
1,管子口对口弯曲,形成一个圆环。
2、8天(第7天已爬7尺)
3,0条直线分平面为1份
1条(1+1)份,2条(2+1+1)份,3条(3+2+1+1份
1999条(1999+1998+1997+-------+2+1+1)份为1999001份
4,我将被五马分尸,若为真则会烧死则假,若为假则五马分尸则为真
5,种在一个坑或按立体的正四面体的顶点排列
6,18瓶,18---6---2再借一瓶喝完后用三个空瓶换得一瓶再还回去
7,这好比两个小和尚在8点同时从山顶山脚出发,必有相遇的时刻此时他总是能在周一和周二的同一钟点到达山路上的同一点.
8,不知道
9,顺时针
10,按1,2,4分开第1天给1,第二天拿走1给2
11,设两地距离akm则飞了a/35*25=(5/7)a
12,2个为a,b,均放在左侧a在左上,b在左下,若a先于b变化,则顺时针,b先于a变化,则逆时针
13,22次,因为时针速度0.5度/min,分针速度6度/min
两次相遇的间隔距离为360度,需360/(6-0.5)=65又5/11min
一天24小时得24*60/65又5/11=22
14将装有红球罐子的49个红球拿到蓝球罐子中,一个留下
那到红求的概率为1/2+(1/2)*49/99=74/99=74.74747%
15是不是奇数对中各数之和被六整除
证:设奇数对中两个奇数为2x-1,2x+1
则之间的数为2x
和为6x,被6整除
证明没有由三个奇数组成的奇数对
证:假设有三个奇数组成的奇数对,为a,b,c
且abc
则a与b,b与c,c与a均为奇数对
所以a+1=b,a+1=c
所以b=c矛盾
所以不存在
16,设开关a,b,c
打开a一段时间,关上,开b
开门
亮着的灯与b相连
未亮但有热度的与a相连
剩下一个与c相连
17,两次
将小球编号1,2,3,4,5,6,7,8
1,2,3放在天平左端
4,5,6放在天平右端
7,8不放
若左端下沉则将1,2,3中
1放在左端,2在右端,3不放
哪端下沉即为重球,都不下沉则3为重球
若右端下沉方法类似
若都不下沉
则把7放在左端,8右端
哪端下沉即为重球
请你用火山喷发 大象 次贷危机 黑客,四个关键词讲个故事(测试逻辑思维,创新能
2008金融危机 女黑客股票被套,没钱只得买次货 陷入次贷危机,经人介绍当了鸡
第一个客人就是壮如大象的猛男 ,20分钟的抽动后 火山喷发了
bbwwwwbb。 2.一只蜗牛从井底爬到井口,每天白天蜗牛要睡觉,晚上才出来活动,一个晚上蜗牛可以向上爬3尺,但是白天睡觉的时候会往下滑2尺,井深10尺,问蜗牛几天
开门 亮着的灯与b相连 未亮但有热度的与a相连 剩下一个与c相连 17,两次 将小球编号1,2,3,4,5,6,7,8 1,2,3放在天平左端 4,5,6放在天平右端 7,8不放 若左端下沉则将1,2,3中 1放在左端,2在右端,3不放 哪端下沉即为重球,都不下沉则3为重球 若右端
置在监听模式,并且可以截获网上传输的信息,也就是说,当黑客登录网络主机并取得超级用户权限后,若要登录其他主机,使用网络监听可以有效地截获网上的数据,这是黑客使用最多的方法,但是,网络监听只能应用于物理上连接于同一网段的主机,通常被用做获取用户口令。谁有逻辑思维测试题??越
,那么照相机比它贵300美元,即310美元。加在一起就成为320美元。正确答案 应该是皮套5美元,应找零钱95美元。这样,照相机为305美元,加皮套共310美元,才符合计算。我的思路:设皮套为X,照相机为300+X,即2X+300=310,X=5。只是用到初中的数学知识。